
User’s Guide
Version 2

For Use with MATLAB® and Simulink®

OPC
Toolbox

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

OPC Toolbox User’s Guide
© COPYRIGHT 2004-2005 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox are registered
trademarks of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Revision History: June 2004 Online only New for Version 1.0 (Release 14)
August 2004 Online only Revised for Version 1.1 (Release 14+)
October 2004 Online only Revised for Version 1.1.1 (Release 14SP1)
March 2005 Online only Revised for Version 1.1.2 (Release 14SP2)
April 2005 Online only Revised for Version 2.0 (Release 14SP2+)

Contents
1
Introduction

What Is the OPC Toolbox? . 1-2
About OPC . 1-3
Understanding OPC Data Access Servers 1-3
Understanding the OPC Toolbox Object Hierarchy 1-5
How OPC Toolbox Objects Relate to OPC Servers 1-6
System Requirements . 1-8

Preparing to Use the OPC Toolbox . 1-9
Installing the OPC Foundation Core Components 1-9
Configuring DCOM . 1-10
Installing the Matrikon OPC Simulation Server 1-14

Exploring Available OPC Servers . 1-15
Determining Server IDs for a Host . 1-15

Connecting to OPC Servers . 1-17
Creating a Client Object . 1-17
Connecting a Client to the Server . 1-18
Browsing the OPC Server Name Space 1-19

Troubleshooting . 1-23
i

ii Contents
2
Quick Start: Using the OPC Tool GUI

Example: Basic OPC Toolbox Acquisition Procedure 2-2
Overview . 2-2
Step 1: Launch the OPC Tool GUI . 2-3
Step 2: Locate Your OPC Server . 2-4
Step 3: Create an OPC Data Access Client Object 2-6
Step 4: Connect to the OPC Server . 2-9
Step 5: Create an OPC Data Access Group Object 2-10
Step 6: Browse the Server Name Space 2-12
Step 7: Add OPC Data Access Items to the Group 2-16
Step 8: View All Item Values . 2-19
Step 9: Configure Group Properties for Logging 2-20
Step 10: Log OPC Server Data . 2-22
Step 11: Plot the Data . 2-23
Step 12: Clean Up . 2-25

3
Using OPC Toolbox Objects

Creating OPC Toolbox Objects . 3-2
Creating Data Access Group Objects . 3-2
Creating Data Access Item Objects . 3-5
Building an Object Hierarchy with a Disconnected Client 3-8
Creating OPC Toolbox Object Vectors . 3-9
Working with Public Groups . 3-12

Configuring OPC Toolbox Properties 3-16
Viewing the Values of Object Properties 3-16
Viewing the Value of a Particular Property 3-17
Getting Information About Object Properties 3-18
Setting the Value of an Object Property 3-19
Viewing a List of All Settable Object Properties 3-20

Deleting Objects . 3-22

Saving and Loading Objects . 3-24

4
Reading, Writing, and Logging OPC Data

Reading and Writing Data . 4-2
Reading Data from an Item . 4-2
Writing Data to an Item . 4-6
Reading and Writing Multiple Values . 4-7

Data Change Events and Subscription 4-11
Configuring OPC Toolbox Objects for Data Change Events . . 4-11
How the OPC Toolbox Processes Data Change Events 4-14
How to Customize the Data Change Event Response 4-14

Logging OPC Server Data . 4-16
How the OPC Toolbox Logs Data . 4-16
Configuring a Logging Session . 4-19
Executing a Logging Task . 4-22
Getting Logged Data into MATLAB . 4-24

5
Working with OPC Toolbox Data

Understanding OPC Data: Value, Quality, and TimeStamp 5-2
The Relationship Between Value, Quality, and TimeStamp . . . 5-2
How Value, Quality, and TimeStamp Are Obtained 5-3

Working with Structure Formatted Data 5-7
Example: Performing a Read Operation on Multiple Items . . . 5-7
Interpreting Structure Formatted Data 5-8
When to Use Structure Formatted Data 5-11
Converting Structure Formatted Data to Array Format 5-12

Understanding Array Formatted Data 5-13
Conversion of Logged Data to Arrays . 5-14
iii

iv Contents
Working with Different Data Types . 5-16
Conversion Between MATLAB Data Types and COM Variant
Data Types . 5-16
Conversion of Values Written to an OPC Server 5-17
Conversion of Values Read from an OPC Server 5-18
Handling Arrays for Item Values . 5-18

6
Using Events and Callbacks

Example: Using the Default Callback Function 6-2

Event Types . 6-4

Retrieving Event Information . 6-9
Event Structures . 6-9
Example: Accessing Data in the Event Log 6-12

Creating and Executing Callback Functions 6-15
Creating Callback Functions . 6-15
Specifying Callback Functions . 6-17
Example: Viewing Recently Logged Data 6-19

7
Using the OPC Blockset Library

Overview . 7-2

Example: Reading and Writing Data from the Matrikon OPC
Simulation Server . 7-3

Step 1: Open the OPC Blockset Library 7-4
Step 2: Create a New Model . 7-5
Step 3: Drag the OPC Toolbox Blocks into the Model 7-6
Step 4: Drag Other Blocks to Complete the Model 7-7
Step 5: Configure OPC Servers for the Model 7-9
Step 6: Specify the Block Parameter Values 7-12
Step 7: Connect the Blocks . 7-15
Step 8: Run the Simulation . 7-16

8
Function Reference

Functions — Categorical List . 8-2
Getting Command-Line Function Help 8-2
Object Creation and Configuration Functions 8-3
Server Exploration Functions . 8-4
Data Access Functions . 8-4
Logging and Buffering Functions . 8-5
Simulink Support Functions . 8-5
General Functions . 8-6

Functions — Alphabetical List . 8-7
v

vi Contents
9
Property Reference

Properties — Categorical List . 9-2
OPC Data Access Client Object Properties 9-2
Data Access Group Object Properties . 9-4
Data Access Item Object Properties . 9-7

Properties — Alphabetical List . 9-8

10
Block Reference

OPC Blockset Library . 10-2
Opening the Blockset Library . 10-2

Blocks — Alphabetical List . 10-5

A
OPC Quality Strings

Major Quality . A-2

Quality Substatus . A-3

Limit Status . A-6

B
OPC Server Item Properties

Understanding OPC Server Item Properties B-2

OPC Specific Properties . B-4

OPC Recommended Properties . B-5

Index
vii

viii Contents

1

Introduction

This chapter describes the OPC Toolbox and its components.

What Is the OPC Toolbox? (p. 1-2) Provides an overview of the OPC Toolbox.

Preparing to Use the OPC Toolbox
(p. 1-9)

Describes how to set up your computer to enable
communication with OPC servers.

Exploring Available OPC Servers
(p. 1-15)

Describes how to browse your network for OPC servers,
and how to browse an OPC server to find server item
names.

Connecting to OPC Servers (p. 1-17) Describes how to create OPC Toolbox client objects and
connect to OPC servers.

Troubleshooting (p. 1-23) Provides some helpful tips on diagnosing problems you
might encounter using the toolbox.

1 Introduction

1-2
What Is the OPC Toolbox?
The OPC Toolbox is a collection of functions that extend the capability of the
MATLAB® numeric computing environment, and blocks that extend the
Simulink® dynamic system simulation environment. Using the OPC Toolbox,
you can acquire live OPC data directly into MATLAB and Simulink, and write
data directly to the OPC server from MATLAB and Simulink.

The OPC Toolbox implements a hierarchical object-oriented approach to
communicating with OPC servers using the OPC Data Access Standard. Using
toolbox functions, you create an OPC Data Access Client object (opcda client
object) that represents the connection between MATLAB and an OPC server.
Using properties of the opcda client object you can control various aspects of
the communication link, such as time out periods, connection status, and
storage of events associated with that client. “Connecting to OPC Servers” on
page 1-17 describes how to create opcda objects.

Once you establish a connection to an OPC server, you create Data Access
Group objects (dagroup objects) that represent collections of OPC Data Access
Items. You then add Data Access Item objects (daitem objects) to that group,
for monitoring server item values from the OPC server and writing values to
the OPC server. You can use the dagroup object to perform such actions as
determining how often the items in the group must be updated, executing a
MATLAB function when the server provides notification of changes in item
state, and other tasks related to the group. “Creating OPC Toolbox Objects” on
page 3-2 describes how to create and configure dagroup objects and add daitem
objects to a group.

The OPC Data Access Standard does not provide access to historical data.
(While the OPC Foundation has defined the Historical Data Access
specification for access to historical data, a significant number of Data Access
servers do not support this standard.) Using the OPC Toolbox, you can log
records (a list of items that have changed, and their new values) from an OPC
Data Access Server to disk or to memory, for later processing. The logging task
is controlled by the dagroup object. “Logging OPC Server Data” on page 4-16
describes how to log data using the OPC Toolbox.

To work with the data you acquire, you must bring it into the MATLAB
workspace. When the records are acquired, the toolbox stores them in a
memory buffer or on disk. The toolbox provides several ways to bring one or
more records of data into the workspace where you can analyze or visualize the

What Is the OPC Toolbox?
data. Chapter 5, “Working with OPC Toolbox Data” describes the different data
formats and their application.

You can enhance your OPC application by using event callbacks. The toolbox
has defined certain OPC Toolbox occurrences, such as the start of an
acquisition task, as well as OPC server initiated occurrences, such as
notification that an item’s state has changed, as events. You can associate the
execution of a particular function with a particular event. Chapter 6, “Using
Events and Callbacks” describes this process.

When working in the Simulink modeling and simulation environment, you can
use blocks from the OPC Blockset library to use live OPC data as inputs to your
model and update the OPC server with your model outputs. The OPC Blockset
library includes the capability of running Simulink models in pseudo real time,
by slowing the simulation to match the system clock. You can prototype control
systems, provide plant simulators, and perform optimization and tuning tasks
using Simulink and the OPC Blockset library. Chapter 7, “Using the OPC
Blockset Library” describes how to use these blocks in a Simulink model.

About OPC
Open Process Control (OPC), also known as OLE for Process Control, is a series
of seven specifications defined by the OPC Foundation
(http://www.opcfoundation.org) for supporting open connectivity in
industrial automation. OPC uses Microsoft DCOM technology to provide a
communication link between OPC servers and OPC clients. OPC has been
designed to provide reliable communication of information in a process plant,
such as a petrochemical refinery, an automobile assembly line, or a paper mill.

Before you interact with OPC servers using the OPC Toolbox, you should
understand the OPC client-server relationship, how OPC servers organize
their server items, and how clients can interact with those server items.
“Understanding the OPC Toolbox Object Hierarchy” on page 1-5 explains these
concepts in detail.

Understanding OPC Data Access Servers
The OPC Toolbox is an OPC Data Access client application, capable of
connecting to any OPC Data Access compliant server. By utilizing the OPC
Foundation Data Access standard, the OPC Toolbox does not require any
knowledge about the internal configuration and operation of the OPC server.
1-3

1 Introduction

1-4
Instead, the Data Access Standard provides the common mechanism for the
server and client to interact with each other.

An OPC Data Access Server is identified by a unique server ID. The server ID
is unique to the computer on which the server is located. A combination of the
host name of the server computer, and the server ID of the OPC server,
provides a unique identifier for an OPC server on a network of computers.

OPC Server Name Spaces
All OPC servers are required to publish a name space, consisting of an
arrangement of the name of every server item (also known as an item ID)
associated with that server. The name space provides the internal map of every
device and location that the server is able to monitor and/or update.

The following figure shows a portion of the name space on a typical OPC server.

Figure 1-1: Example of OPC Server and Name Space

A server item represents a value on the OPC server that a client may be
interested in. A server item could represent a physical measurement device
(such as a temperature sensor), a particular component of a device (such as the
set-point for a controller), or a variable or storage location in a supervisory
control and data acquisition (SCADA) system. Each server item is uniquely
represented on the server by a fully qualified item ID. The fully qualified item
ID is usually made up of the path to that server item in the tree, with each node
name separated by a period character. In Figure 1-1, the fully qualified item ID
for the highlighted server item might be Area01.UnitA.FIC01.PV.

OPC Server myServer.ID.1 ServerID

Server Name Space

Server Item

What Is the OPC Toolbox?
Most OPC servers provide a hierarchical name space, where server items are
arranged in a tree-like structure. The tree can contain many different
categories (called branch nodes), each with one or more branches and/or leaf
nodes. A leaf node contains no other branches, and often represents a specific
server Item. The fully qualified item ID of a server item is simply the ‘path’ to
that leaf node, with a server-dependent separator.

Some OPC servers provide only a flat name space, where server items are all
arranged in one single group. You could consider a flat name space as a name
space containing only leaf nodes.

It is possible to convert a hierarchical name space into a flat name space. It is
not always possible to convert a flat name space into a hierarchical name space.

For information on how to obtain the name space of an OPC server, see
“Browsing the OPC Server Name Space” on page 1-19.

Understanding the OPC Toolbox Object Hierarchy
The OPC Toolbox is implemented using three basic objects, designed to help
you manage connections to servers and collections of server items. The three
objects are arranged in a specific hierarchy, shown in the following figure.

OPC Toolbox Object Hierarchy

1 OPC Data Access Client objects (opcda client objects) represent a specific
OPC client instance that can communicate with only one server. You define
the server using the Host and ServerID properties. The Host property
defines the computer on which the server is installed. The ServerID
property defines the Program ID (ProgID) of the server, created when the
server was installed on that host. The opcda client object acts as a container

1

3

2

1-5

1 Introduction

1-6
for multiple group objects, and manages the connection to the server,
communication with the server, and server name space browsing.

2 Data Access Group objects (dagroup objects) represent containers for one
or more server items (data points on the server.) A dagroup object manages
how often the items in the group must be read, whether historical item
information must be stored, and also manages creation and deletion of
items. Groups cannot exist without an opcda client object. You create
dagroup objects using the addgroup function of an opcda client object.

3 Data Access Item objects (daitem objects) represent server items. Items
are defined by an item ID, which uniquely defines that server item in the
server’s name space. A daitem object has a Value, a Quality, and a
TimeStamp, representing the information collected by the server from an
instrument or data point in a SCADA system. The Value, Quality, and
TimeStamp properties represent the information known to the server when
the server was last asked to access information from that instrument.

A dagroup object can only exist “within” an opcda client object. Similarly, a
daitem object can only exist within a dagroup object. You create dagroup
objects using the addgroup method of an opcda client object. You create daitem
objects using the additem method of the dagroup object.

How OPC Toolbox Objects Relate to OPC Servers
The OPC Toolbox uses objects to define the server that the client must connect
to, and the arrangement of items in groups. The following figure shows the
relationship between the OPC Toolbox objects and an OPC server.

What Is the OPC Toolbox?
Figure 1-2: Relationship Between OPC Toolbox Objects and OPC Server

The opcda client object establishes the connection between the OPC Toolbox
and the OPC server, using OPC Data Access Specification standards. The
standards are based on Microsoft COM/DCOM interoperability standards.

The daitem objects represent specific server items. Note that a client typically
requires only a subset of the entire name space of a server in order to operate
effectively. In Figure 1-2, only the PV and SP items of FIC01, and the LIT01
item, are required for that particular group. Another group may only contain a
single daitem object, representing a single server item.

Note The dagroup object has no equivalent on the OPC server. However, the
server keeps a record of each group that a client has created, and uses that
group name to communicate to the client information about the items in that
group.

OPC Server myServer.ID.1OPC Toolbox

OPC Toolbox Engine

M-file Functions

MATLAB

OPC Data Access

COM/DCOM

OPC Data Access

COM/DCOM

Network

Client Computer

Server Computer (Host)

daitem object is a
link to a Server Item

opcda object
initiates connection
to Server
1-7

1 Introduction

1-8
System Requirements
The OPC Toolbox provides the Data Access client capabilities from within
MATLAB. In order to utilize the functionality of the OPC Toolbox, you will
need access to an OPC server that supports the Data Access Specification
version 2.05. In addition, you will need to ensure that you are able to connect
to those OPC servers from the computer on which the OPC Toolbox is installed.
For more information on how to configure the client and server computers so
that you can connect to an OPC server, see “Preparing to Use the OPC Toolbox”
on page 1-9.

Preparing to Use the OPC Toolbox
Preparing to Use the OPC Toolbox
Before you can communicate with OPC servers on your network, you need to
prepare your workstation (and possibly the OPC server host computer) to use
the technologies on which the OPC Toolbox is built. These technologies,
described in “About OPC” on page 1-3, allow you to browse for and connect to
OPC servers on your network, and allow those OPC servers to interact with
your MATLAB session using the OPC Toolbox.

The specific steps are described in the following sections:

• “Installing the OPC Foundation Core Components” on page 1-9 describes
how you can install the OPC Foundation Core Components, which allow you
to browse for OPC servers from your workstation.

• “Configuring DCOM” on page 1-10 describes steps that you or your system
administrator will need to take on your local workstation and on the OPC
server computers to enable interaction between the OPC Toolbox and the
OPC servers on those host computers.

• “Installing the Matrikon OPC Simulation Server” on page 1-14 describes
how to download and install the Matrikon OPC Simulation Server. This
optional step allows you to run the examples provided in this guide.

Installing the OPC Foundation Core Components
The OPC Foundation has provided a set of tools for browsing other computers
on your network for OPC servers, and for communicating with the OPC
servers. These tools are called the OPC Foundation Core Components, and are
shipped with the OPC Toolbox.

To install the OPC Foundation Core Components, you use the opcregister
function. You can also use the opcregister function to remove or repair the
OPC Foundation Core Components installation.

Installing, repairing, and removing the OPC Foundation Core Components
follows the same steps:

1 If you are repairing or removing the OPC Foundation Core Components,
make sure that you do not have any OPC Toolbox objects in memory. Use the
opcreset function to clear all objects from memory.

opcreset;
1-9

1 Introduction

1-1
2 Run opcregister with the action you would like to perform. If you do not
supply an option, the function assumes that you want to install the
components. Otherwise, use 'repair' to repair an installation (reinstall the
files), or 'remove' to remove the components.

opcregister('install')

3 You will be prompted to type Yes to confirm the action you want to perform.
You must type Yes exactly as shown, without any quotes. This confirmation
question is used to ensure that you acknowledge the action that is about to
take place.

4 The OPC Foundation Core Components will be installed, repaired, or
removed from your system.

5 If you receive a warning about having to reboot your computer, you must
quit MATLAB and restart your computer for the changes to take effect.

Note If you get an error message stating that your version of the Microsoft
Installer is incorrect, you will need to download the Microsoft Installer 2.0
from the Microsoft Web site (http://www.microsoft.com). Microsoft
Installer 2.0 ships with Windows XP, and with Windows 2000 Service Pack 2
or later.

Configuring DCOM
DCOM is a client-server based architecture for enabling communication
between two applications running on distributed computers. The OPC Data
Access Specification utilizes DCOM for communication between the OPC
Client (for example, the OPC Toolbox) and the OPC server. In order to
successfully use DCOM, those two computers must share a common security
configuration so that the two applications are granted the necessary rights to
communicate with each other.

This section describes two typical DCOM configuration options to allow the
OPC Toolbox to work. Other DCOM options may provide sufficient permissions
for the OPC Toolbox to work with an OPC server; the options described here
are known to work with tested vendors’ OPC servers.
0

Preparing to Use the OPC Toolbox
There are two configuration types described in this section:

• Security between the client and server negotiated on a dedicated named user
basis. You do not have to be logged in as the named user in order to use this
mechanism; all communications between the client and the server are
performed using the dedicated named user, independently of the user
making the OPC requests.

• No security between the client and server. Use this option only if you are
connecting to an OPC server on a dedicated, private network. This
configuration option has been known to cause some services in Microsoft
Windows to fail.

You should use the named user configuration, unless your system
administrator indicates that no security is required for OPC access.

Caution If your OPC server software comes with DCOM setup guidelines,
you should follow the instructions provided by the OPC server vendor. The
guidelines provided in this section are generic and may not suit your specific
network and security model.

Configuring DCOM to Use Named User Security

Note The following instructions apply to the Windows 2000 operating
system. Users of Windows NT and Windows XP should be able to adapt these
instructions in order to configure DCOM on their systems.

In order to configure DCOM to use named user security, you will have to ensure
that both the server machine and client machine have a common user who is
granted DCOM access rights on both the server and client machines. You
should consult the following sections for information on configuring each
machine:

• “OPC server machine configuration” provides the steps that you must
perform on each of the machines providing OPC servers.

• “Client machine configuration” provides the steps that you must perform on
the machine that will run MATLAB and the OPC Toolbox.
1-11

1 Introduction

1-1
OPC server machine configuration. On the machines hosting the OPC servers,
perform the following steps:

1 Create a new local user. The name used in these instructions is “opc” but you
can choose any name you like, as long as you remain consistent throughout
these instructions.

2 Click Start and choose Run. At the prompt, type

dcomcnfg

3 Select the OPC server from the list provided and click on Properties to view
the properties.

4 Under the General tab, select Authentication Level and choose Connect.

5 Under the Identity tab choose the radio button labeled This User. Specify
the username as “opc” and provide the password for that user.

6 If the OPC server runs as a service, make sure that the service runs as the
“opc” user (created in Step 1) and not as the system account.

7 Repeat Steps 3–6 for each OPC server installed on the server machine.

8 In the Default Security tab in the Distributed COM Configuration
Properties window, ensure that the “opc” user is granted launch
permissions and access permissions.

Client machine configuration. On the machine(s) that will be running MATLAB
and the OPC Toolbox, perform the following steps:

1 On the client machine(s), create the identical local user with the same name
and password permissions as you set up in Step 1 of the OPC server machine
configuration.

2 Run dcomcnfg (see Step 2 of the OPC server machine configuration) and
select the Default Security tab.

3 Ensure that the “opc” user created in Step 1 is granted launch permissions
and access permissions.

Your local client machine and server applications are now configured to use the
same username when attempting to establish a connection with each other.
2

Preparing to Use the OPC Toolbox
Configuring DCOM to Use No Security

Caution You should not use this option if you are not in a completely trusted
network. Turning off DCOM security means that any user on the network can
launch any COM object on your local machine. Consult with your network
administrator before following these instructions.

1 On the server machine, click Start and choose Run. At the prompt, type

dcomcnfg

2 In the Default Properties tab, make sure that Enable Distributed COM
On This Computer is selected. Select None as the Default Authentication
Level, and Anonymous as the Default Impersonation Level.

3 Perform the same configuration on the client machine.

Both the client and the server are now configured so that anybody can access
any COM object on either machine.

Caution This configuration is potentially very dangerous in terms of security,
and is recommended for debugging purposes only.
1-13

1 Introduction

1-1
Installing the Matrikon OPC Simulation Server
All examples provided in this guide and in the online help provided with the
OPC Toolbox make use of a demonstration server provided by Matrikon. The
demonstration server may be downloaded free of charge from the Matrikon
Web site at

http://www.matrikon.com/drivers/opc/simulation.asp

Note You do not have to install the Matrikon OPC Simulation Server to
enable any functionality of the OPC Toolbox. The Simulation Server is used
purely for demonstrating the capabilities and syntax of OPC Toolbox
commands, and for providing fully working example code.

To install the Matrikon OPC Simulation Server, follow the installation
instructions with the software. When prompted for a server ID, use the
standard server ID assigned to the Simulation Server
('Matrikon.OPC.Simulation').
4

Exploring Available OPC Servers
Exploring Available OPC Servers
To interact with an OPC server, the OPC Toolbox needs two pieces of
information:

• The hostname of the computer on which the OPC server has been installed.
Typically the hostname is a descriptive term (such as 'plantserver') or an
IP address (such as 192.168.2.205).

• The server ID of the server you want to access on that host. Because a single
computer can host more than one OPC server, each OPC server installed on
that computer is given a unique ID during the installation process.

Your network administrator will be able to provide you with the hostnames for
all computers providing OPC servers on your network. You may also obtain a
list of server IDs for each host on your network, or you can use the toolbox
function opcserverinfo to access server IDs from a host, as described in the
following section.

Determining Server IDs for a Host
When an OPC server is installed, a unique server ID must be assigned to that
OPC server. The server ID provides a unique name for a particular instance of
an OPC server on a host, even if multiple copies of the same server software are
installed on the same machine.

To determine the server IDs of OPC servers installed on a host, call the
opcserverinfo function, specifying the hostname as the only argument. When
called with this syntax, opcserverinfo returns a structure containing
information about all the OPC servers available on that host.

info = opcserverinfo('localhost')

info =
 Host: 'localhost'
 ServerID: {1x4 cell}
 ServerDescription: {1x4 cell}
 OPCSpecification: {'DA2' 'DA2' 'DA2' 'DA2'}
 ObjectConstructor: {1x4 cell}
1-15

1 Introduction

1-1
The fields in the structure returned by opcserverinfo provide the following
information.

Server Information Returned by opcserverinfo

Field Description

Host Text string that identifies the name of the host.
Note that no name resolution is performed on an
IP address.

ServerID Cell array containing the server IDs of all OPC
servers accessible from that host.

ServerDescription Cell array containing descriptive text for each
server.

OPCSpecification Cell array containing the OPC Specification that
the server provides. Currently, the OPC Toolbox
supports only the 'DA2' specification.

ObjectConstructor Cell array containing default syntax you can use
to create an OPC Data Access Client object
associated with the server. See “Creating a Client
Object” on page 1-17 for more information.
6

Connecting to OPC Servers
Connecting to OPC Servers
After you get information about your OPC servers, described in “Exploring
Available OPC Servers” on page 1-15, you can establish a connection to the
server by creating an OPC Data Access Client (opcda) object and connecting
that client to the server. These steps are described in the following sections:

• “Creating a Client Object” on page 1-17

• “Connecting a Client to the Server” on page 1-18

Creating a Client Object
To create an opcda object, call the opcda function specifying the hostname, and
server ID. You retrieved this information using the opcserverinfo function
(described in “Exploring Available OPC Servers” on page 1-15).

This example creates an opcda object to represent the connection to a Matrikon
OPC Simulation Server (available from http://www.matrikon.com). The
opcserverinfo function includes the default opcda syntax in the
ObjectConstructor field.

da = opcda('localhost', 'Matrikon.OPC.Simulation.1');

Viewing a Summary of a Client Object
To view a summary of the characteristics of the opcda object you created, enter
the variable name you assigned to the object at the command prompt. For
example, this is the summary for the object da.

da

da =
Summary of OPC Data Access Client Object: localhost/Matrikon.OPC.Simulation.1
 Server Parameters
 Host : localhost
 ServerID : Matrikon.OPC.Simulation.1
 Status : disconnected
 Timeout : 10 seconds
 Object Parameters
 Group : 0-by-1 dagroup object
 Event Log : 0 of 1000 events

1
2

3

1-17

1 Introduction

1-1
The items in this list correspond to the numbered elements in the object
summary:

1 The title of the Summary includes the name of the opcda client object. The
default name for a client object is made up of the 'host/serverID'. You can
change the name of a client object using the set function, described in
“Configuring OPC Toolbox Properties” on page 3-16.

2 The Server Parameters provide information on the OPC server that the
client is associated with. The host name, server ID, and connection status
are provided in this section. You connect to an OPC server using the connect
function, described in “Connecting a Client to the Server” on page 1-18.

3 The Object Parameters section contains information on the OPC Data
Access Group (dagroup) objects configured on this client. You use group
objects to contain collections of items. Creating group objects is described in
“Creating Data Access Group Objects” on page 3-2.

Connecting a Client to the Server
You connect a client to the server using the connect function.

connect(da);

Once you have connected to the server, the Status information in the client
summary display will change from 'disconnected' to 'connected'.

If the client could not connect to the server for some reason (for example, if the
OPC server is shut down) an error message will be generated. For information
on troubleshooting connections to an OPC server, see “Troubleshooting” on
page 1-23.

Once you have connected the client to the server, you can perform the following
tasks:

• Get diagnostic information about the OPC server, such as the server status,
last update time, and supported interfaces. You use the opcserverinfo
function to obtain this information. See opcserverinfo in the function
reference for more information.

• Browse the OPC server name space for information on the available server
items. See “Browsing the OPC Server Name Space” on page 1-19 for details
on browsing the server name space.
8

Connecting to OPC Servers
• Create group and item objects to interact with OPC server data. See
“Creating OPC Toolbox Objects” on page 3-2 for information on creating
group and item objects.

Browsing the OPC Server Name Space
A connected client object allows you to interact with the OPC server to obtain
information about the name space of that server. The server name space
provides access to all the data points provided by the OPC server by naming
each of the data points with a server item, and then arranging those server
items into a name space that provides a unique identifier for each server item.

This section describes how you use a connected client object to browse the name
space and find information about each server item. These activities are
described in the following sections:

• “Getting the Server Name Space” on page 1-19 describes how to obtain a
server name space, or a partial server name space, using the getnamespace
and serveritems functions.

• “Getting Information about a Specific Server Item” on page 1-21 describes
how to query the server for the properties of a specific server item.

Getting the Server Name Space
You use the getnamespace function to retrieve the name space from an OPC
server. You must specify the client object that is connected to the server you are
interested in. The name space is returned to you as a structure array
containing information about each node in the name space.

The example below retrieves the name space of the Matrikon OPC Simulation
Server installed on the local host.

da = opcda('localhost','Matrikon.OPC.Simulation.1');
connect(da);
ns = getnamespace(da)

ns =
110x1 struct array with fields:
 Name
 FullyQualifiedID
 NodeType
1-19

1 Introduction

1-2
The fields of the structure are described in the following table.

From the example above, exploring the name space shows.

ns(1)

ans =
 Name: 'Simulation Items'
 FullyQualifiedID: 'Simulation Items'
 NodeType: 'branch'
ns(3)

ans =
 Name: 'Simulation Items.Bucket Brigade.ArrayOfReal8'
 FullyQualifiedID: 'Bucket Brigade.ArrayOfReal8'
 NodeType: 'leaf'

From the information above, the first node is a branch node called 'Simulation
Items', and is most likely not a valid server item, but a grouping node. The
third node is a leaf node with a fully qualified item ID of 'Bucket
Brigade.ArrayOfReal8'. Since this node is a leaf node, it is most likely a
server item that can be monitored by creating an item object.

The third node in the example above is actually contained within the first
branch node. You can see this by examining the Name field of the structure.
Note how the first node’s name ('Simulation Items') is contained in the third
node’s name. By default, the getnamespace function flattens a hierarchical

Field Description

Name The name of the node, as a string.

FullyQualifiedID The fully qualified item ID of the node, as a string.
The fully qualified item ID is made up of the path to
the node, concatenated with '.' characters. You use
the fully qualified item ID when creating an item
object associated with this node.

NodeType The type of node. NodeType can be 'branch'
(contains other nodes) or 'leaf' (contains no other
branches).
0

Connecting to OPC Servers
name space. If you wish to obtain the name space in a hierarchical format you
can pass an additional parameter, 'hierarchical', to the getnamepsace
function. You will then get the name space as a structure array with each
element containing all of the fields as listed above, plus one additional field
called 'Nodes'. The 'Nodes' field is another structure array that is the same
as the getname space structure array, containing information for all of the
nodes contained within that branch node (or an empty matrix is the node is a
leaf).

Getting Information about a Specific Server Item
In addition to publishing a name space to all clients, an OPC server provides
information about the properties of each of the server items in the name space.
These properties provide information on the data format used by the server to
store the server item value, a description of the server item, and additional
properties configured when the server item was created. The additional
properties may include information on the range of the server item, the
maximum rate at which the server can update that server item value, etc.

You access a property using a defined set of property IDs. A property ID is
simply a number that defines a specific property of the server item. Property
IDs are divided into three categories:

• OPC Specific Properties (1–99) that every OPC server must provide. The
OPC Specific Properties include the server item’s Value, Quality, and
Timestamp. See “Understanding OPC Data: Value, Quality, and
TimeStamp” on page 5-2 for more information on understanding OPC data.

• OPC Recommended Properties (100–4999) that OPC servers can provide.
These properties include maximum and minimum values, a description of
the server item, and other commonly used properties. See Appendix B, “OPC
Server Item Properties” for more information on OPC Recommended
Properties.

• Vendor Specific Properties (5000 and higher) that an OPC server may define
and use. These properties may be different for each OPC server, and provide
a space for OPC server manufacturers to define their own properties.

You query a server item’s properties using the serveritemprops function,
specifying the client object, the fully qualified item ID of the server item you
are interested in, and an optional vector of property IDs that you wish to
retrieve. If you do not specify the property IDs, all properties defined for that
server item are returned to you.
1-21

1 Introduction

1-2
Note You obtain the fully qualified item ID from the server using the
getnamespace function or the serveritems function, which simply returns all
fully qualified item IDs in a cell array of strings. See the function reference for
more information on the serveritems function.

The following example queries the Item Description property (ID 101) of the
server item 'Bucket Brigade.ArrayOfReal8' from the example in “Getting
the Server Name Space” on page 1-19.

p = serveritemprops(da, 'Bucket Brigade.ArrayOfReal8', 101)

p =
 PropID: 101
 PropDescription: 'Item Description'
 PropValue: 'Bucket brigade item.'

For a list of OPC Foundation property IDs, see Appendix B, “OPC Server Item
Properties.”
2

Troubleshooting
Troubleshooting
If you are unable to establish a connection to an OPC server, the following steps
may help you to identify problems with installation and configuration that may
be preventing you from successfully querying and connecting to OPC servers.

Most problems with connecting to an OPC server relate to the DCOM settings
on either the host or the client machine. For information on configuring DCOM,
see “Configuring DCOM” on page 1-10.

Unable to find an OPC server. First, check that you are able to communicate with
the host from your client. You can test this by attempting to run a Command
Prompt and using the Windows 'ping' command on the host. Alternatively, try
to browse to the host using the Network Neighborhood.

If you are able to communicate with the host, but you are unable to find an OPC
server (using the opcserverinfo command) on that host, then the OPC
Foundation Core Components may have to be reinstalled on your workstation.
You can run the opcregister function to repair your OPC Foundation Core
Components installation. For more information see “Installing the OPC
Foundation Core Components” on page 1-9.

“Class not registered” error when attempting to query a server. If you get this error
while attempting to query a server using opcserverinfo, or when attempting to
add a host in the OPC Tool GUI, then the OPC Foundation Core Components
have not been installed correctly. Install the OPC Foundation Core
Components, as described in “Installing the OPC Foundation Core
Components” on page 1-9.

Unable to query the server using opcserverinfo. If you are unable to query the server
using opcserverinfo, the most common cause is incorrectly configured local
DCOM security settings. Review the section on “Configuring DCOM” on page
1-10.

Unable to connect to the OPC server. An inability to connect to the OPC server
usually indicates that the security model on the server is not allowing you to
make an initial connection. Check the DCOM configuration on the server, and
review the section on “Configuring DCOM” on page 1-10.
1-23

1 Introduction

1-2
Unable to create a group after successfully connecting. If you are able to connect to the
server but cannot create a group, the most common cause is incorrectly
configured local DCOM security settings. Review the section on “Configuring
DCOM” on page 1-10.

“Error occurred whilst querying interface: IID_IOPCDataCallback” error message. If you
get this error while attempting to add a group to a connected client object, then
your local DCOM security settings are not permitting the OPC server to
connect to the OPC Toolbox client on the local machine. Review the section on
“Configuring DCOM” on page 1-10.
4

2

Quick Start: Using the
OPC Tool GUI

The best way to learn about the capabilities of the OPC Toolbox is to look at a simple example. This
chapter illustrates the basic steps required to log data from an OPC server for analysis and
visualization. The example utilizes OPC Tool, the OPC Toolbox graphical user interface (GUI), to
demonstrate the process, and includes information on how to achieve the same results from the
command line.

This chapter contains cross-references to other sections in the documentation that provide more
in-depth discussions of the relevant concepts.

Example: Basic OPC Toolbox
Acquisition Procedure (p. 2-2)

Presents a step-by-step approach to using the toolbox to
interact with OPC servers from MATLAB.

2 Quick Start: Using the OPC Tool GUI

2-2
Example: Basic OPC Toolbox Acquisition Procedure
This section illustrates the basic steps required to create an OPC Toolbox
application by visualizing the Triangle Wave and Saw-toothed Wave signals
provided with the Matrikon OPC Simulation Server. The application logs data
to memory and plots that data, highlighting uncertain or bad data points. By
visualizing the data you can more clearly see the relationships between the
signals.

Note To run the sample code in this example, you must have the Matrikon
OPC Simulation Server available on your local machine. To download the
Matrikon Simulation Server, visit http://www.matrikon.com. The code can be
used with other servers with only minor changes.

The example in this chapter utilizes the OPC Tool GUI. However, each step
contains information on how to complete that step using command-line code.
The entire example is contained in the demonstration file
opcdemo_quickstart.

Overview
To use the OPC Toolbox to acquire OPC server data, you must perform the
following basic steps:

Step 1: Launch the OPC Tool GUI

Step 2: Locate Your OPC Server

Step 3: Create an OPC Data Access Client Object

Step 4: Connect to the OPC Server

Step 5: Create an OPC Data Access Group Object

Step 6: Browse the Server Name Space

Step 7: Add OPC Data Access Items to the Group

Step 8: View All Item Values

Step 9: Configure Group Properties for Logging

Example: Basic OPC Toolbox Acquisition Procedure
Step 10: Log OPC Server Data

Step 11: Plot the Data

Step 12: Clean Up

The following sections describe how to implement each step.

Step 1: Launch the OPC Tool GUI
To launch the OPC Tool GUI, type opctool at the MATLAB prompt.

opctool

The GUI is displayed with no hosts, servers, or OPC Toolbox objects created.
The following figure describes the main components of the OPC Tool GUI.

OPC Tool Graphical User Interface

In the following steps, you will fill each of the panels with information required
to log data, and you will log the data, by creating and interacting with OPC
Toolbox objects.

Command-Line Equivalent
Since this step simply launches the OPC Tool GUI, there is no equivalent
function when using the command line.

Hosts and OPC
Servers panel

OPC Toolbox
Objects panel

Object Properties
panel

Select between
OPC Servers
and Namespace
view
2-3

2 Quick Start: Using the OPC Tool GUI

2-4
Step 2: Locate Your OPC Server
In this step, you obtain two pieces of information that the toolbox needs to
uniquely identify the OPC server that you want to access. You use this
information when you create an OPC Data Access Client object (opcda client
object), described in “Step 3: Create an OPC Data Access Client Object” on page
2-6.

The first piece of information that you require is the hostname of the server
computer. The hostname (a descriptive name like “PlantServer” or an IP
Address such as 192.168.16.32) qualifies that computer on the network, and
is used by the OPC Data Access protocols to determine the available OPC
servers on that computer, and to communicate with the computer to establish
a connection to the server. In any OPC Toolbox application, you must know the
name of the OPC server’s host, so that a connection with that host can be
established. Your network administrator will be able to provide you with a list
of hostnames that provide OPC servers on your network. In this example, we
will use localhost as the hostname, because we will connect to the OPC server
on the same machine as the client.

The second piece of information that you require is the OPC server’s server ID.
Each OPC server on a particular host is identified by a unique server ID (also
called the Program ID or ProgID), which is allocated to that server on
installation. The server ID is a text string, usually containing periods.

Although your network administrator will be able to provide you with a list of
server IDs for a particular host, you can query the host for all available OPC
servers. “Exploring Available OPC Servers” on page 1-15 discusses how to
query hosts from the command line.

Using the OPC Tool GUI you can browse a host using the following steps:

1 In the Hosts and OPC Servers panel, click on the Add host icon, to bring
up the Host name dialog shown below.

Add Host Button and Resulting Host Name Dialog

click

Example: Basic OPC Toolbox Acquisition Procedure
2 In the Host name dialog, enter the name of the host. In this case, we can use
the “localhost” alias.

localhost

Click OK. The hostname will be added to the OPC Network tree view, and
the OPC servers installed on that host will automatically be found and
added to the tree view. Your Hosts and OPC Servers panel should look
similar to the one shown below.

Example of Hosts and OPC Servers Panel

Note that the local host in this example provides three OPC servers. The
Server ID for this example is 'Matrikon.OPC.Simulation.1'.

Command-Line Equivalent
The command-line equivalent for this step uses the function opcserverinfo.

hostInfo = opcserverinfo('localhost')

hostInfo =
 Host: 'localhost'
 ServerID: {1x3 cell}
 ServerDescription: {1x3 cell}
 OPCSpecification: {'DA2' 'DA2' 'DA2'}

OPC Servers
on host

Host

Host properties
(when host
selected)

Update

Add host

Servers Toolbar

Delete host

Create client

View name space
2-5

2 Quick Start: Using the OPC Tool GUI

2-6
 ObjectConstructor: {1x3 cell}

Examining the returned structure in more detail provides the server IDs of
each OPC server.

allServers = hostInfo.ServerID'

allServers =
 'Matrikon.OPC.Simulation.1'
 'ICONICS.Simulator.1'
 'Softing.OPCToolboxDemo_ServerDA.1'

Step 3: Create an OPC Data Access Client Object
Once you have determined the hostname and server ID of the OPC server you
want to connect to, you can create an opcda client object. The client controls the
connection status to the server, and stores any events that take place from that
server (such as notification of data changing state, which is called a data
change event) in the event log. The opcda client object also contains any Data
Access Group objects that you create on the client. For more information on the
OPC Toolbox object hierarchy, see “Understanding the OPC Toolbox Object
Hierarchy” on page 1-5.

With the OPC Tool GUI, you can create a client directly from the Hosts and
OPC Servers panel.

Right-click on the Matrikon server node and choose Create client. A client will
be created in the OPC Toolbox Objects panel, as shown in the following figure.

Server Context Menu and Client Node

click

Example: Basic OPC Toolbox Acquisition Procedure
The name of the client (displayed in the OPC Toolbox Objects panel) is
Host/ServerID, where Host is the hostname and ServerID is the Server ID
associated with that client. In this example, the client’s name is
'localhost/Matrikon.OPC.Simulation.1'

Once you have created the client, you can view the properties of the client
object in the Object Properties panel, as shown in the next figure.

Example of OPC Toolbox Objects Panel Showing Client Properties

Alternative Methods for Creating Clients
You can also create a client in the OPC Tool GUI by using one of the following
methods:

• Select the MATLAB OPC Clients node in the OPC Toolbox Objects panel
and click on Add Client in the OPC Toolbox Objects toolbar.

• Choose Add from the Client menu.

• Right-click the MATLAB OPC Clients node in the OPC Toolbox Objects
tree and select Create Client.

If you select one of the methods described above, a dialog appears requesting
the hostname and server ID.
2-7

2 Quick Start: Using the OPC Tool GUI

2-8
Add Client Dialog

When you supply a hostname, you will be able to select the Server ID from a
list, by clicking on Select. Using the Add client dialog, you can also
automatically attempt to connect to the server when the client is created, by
checking Connect after creating OPC Client before clicking OK.

Command-Line Equivalent
The command-line equivalent of this step involves using the opcda function,
specifying the hostname and Server ID arguments.

da = opcda('localhost', 'Matrikon.OPC.Simulation.1')

da =
 OPC Data Access Object: localhost/Matrikon.OPC.Simulation.1
 Server Parameters
 Host: localhost
 ServerID: Matrikon.OPC.Simulation.1
 Status: disconnected
 Object Parameters
 Group: 0-by-1 dagroup object

For more information on creating clients, see “Creating a Client Object” on
page 1-17.

Click to select
ServerID from list
of servers on host.

Client will attempt
to connect when
created.

Example: Basic OPC Toolbox Acquisition Procedure
Step 4: Connect to the OPC Server
OPC Data Access Client objects are not automatically connected to the server
when they are created. This allows you to fully configure an OPC Toolbox object
hierarchy (a client with groups and items) prior to connecting to the server, or
without a server even being present.

Note The Add Client dialog described in “Alternative Methods for Creating
Clients” on page 2-7 can connect the client to the server after creating the
client object.

To connect the client to the server, you can use the OPC Toolbox Objects
toolbar, shown in the following figure.

OPC Toolbox Objects Toolbar

Click on Connect in the OPC Toolbox Objects toolbar. If the client is able to
connect to the server, the icon for that client in the OPC Toolbox Objects tree
will change to show that the client is connected. If the client could not connect
to the server, an error dialog will show any error message returned. See
“Troubleshooting” on page 1-23 for information on why a client may not be able
to connect to a server.

When you connect an opcda client object to the server associated with that
client, the server node in the Hosts and OPC Servers panel also updates to
show that the server has a connection to a client in the GUI. With that
connection, the properties of the server are displayed in the Hosts and OPC
Servers panel. For this example, a typical view of the GUI after connecting to
a client is shown in the next figure.

Create client
Add group
Add item
Delete object
Update
Connect
Disconnect

OPC Toolbox
Objects toolbar
2-9

2 Quick Start: Using the OPC Tool GUI

2-1
Example of Connected Client and OPC Server Properties

The OPC server properties include diagnostic information, such as the
supported OPC Data Access interfaces, the time the server was started, and
the current server status.

Command-Line Equivalent
You use the connect function to connect an opcda client object to the server at
the command line.

connect(da)

Step 5: Create an OPC Data Access Group Object
You create Data Access Group objects (dagroup objects) to control and contain
a collection of Data Access Item objects (daitem objects). A dagroup object
controls how often the server must notify you of any changes in the item values,
control the activation status of the items in that group, and define, start, and
stop logging tasks.

OPC Server
properties
0

Example: Basic OPC Toolbox Acquisition Procedure
To create a dagroup object, click on Add group in the OPC Toolbox Objects
toolbar. A group is created and automatically named, either by the OPC server
or by the OPC Toolbox.

Example of OPC Data Access Group Properties Panel

On their own, dagroup objects are not useful. Once you add items to a group,
you can control those items, read values from the server for all the items in a
group, and log data for those items, using the dagroup object. In Step 6 you
browse the OPC server for available tags. Step 7 involves adding the items
associated with those tags to the dagroup object.

Command-Line Equivalent
To create dagroup objects from the command line, you use the addgroup
function. This example adds a group to the opcda client object already created.
2-11

2 Quick Start: Using the OPC Tool GUI

2-1
grp = addgroup(da)

grp =
 OPC Group Object: Group0
 Object Parameters
 GroupType: private
 Item: 0-by-1 daitem object
 Parent: localhost/Matrikon.OPC.Simulation.1
 UpdateRate: 0.5
 DeadbandPercent: 0
 Object Status
 Active: on
 Subscription: on
 Logging: off
 LoggingMode: memory

See “Creating Data Access Group Objects” on page 3-2 for more information on
creating group objects from the command line.

Step 6: Browse the Server Name Space
All OPC servers provide access to server items via a server name space. The
name space is an ordered list of the server items, usually arranged in a
hierarchical format for easy access. A server item (also known as a tag) is a
measurement or data point on a server, providing information from a device
(such as a pressure sensor) or from another software package that supplies
data through OPC Data Access (such as a SCADA package).

Note If you know the item IDs of the server items you are interested in, you
can skip this section and proceed to “Step 7: Add OPC Data Access Items to
the Group” on page 2-16. In this example, we assume that we do not know the
exact item IDs, although we do know that we want to log information from the
Saw-toothed Waves and Triangular Waves provided by the Matrikon
Simulation Server.

The Namespace tab of the Hosts and Servers panel allows you to graphically
browse a server’s name space. Because most OPC servers contain thousands of
server items, retrieving a name space can be time consuming. When you
2

Example: Basic OPC Toolbox Acquisition Procedure
connect to a server for the first time, the name space is not automatically
retrieved. You have to request the name space using one of the View buttons
in the Server Namespace toolbar, as shown in the following figure.

Namespace Toolbar Showing View Buttons

Click View hierarchical namespace to retrieve the hierarchical name space
for the Matrikon OPC Server. A tree view containing the Matrikon name space
is shown in the panel. Your panel should look similar to the following figure.

Example of Populated Namespace Tree

Note If you choose to view the name space as flat, you get a single list of all
server items in the name space, expanded to their fully qualified names. A
fully qualified name can be used to create a daitem object.

Browsing the name space using the GUI also provides some property
information for each server item. The properties include the published OPC
Item properties such as Value, Quality, and Timestamp, plus additional

Add item

View name spaceServer Namespace
toolbar

Branch node
(contains
other nodes)

Leaf node
(does not
contain nodes)
2-13

2 Quick Start: Using the OPC Tool GUI

2-1
properties published by the OPC server that may provide more information on
that particular server item. For a list of standard OPC properties and an
explanation of their use, consult Appendix B, “OPC Server Item Properties.”

In this example, you need to locate the Saw-toothed Waves and Triangle Waves
signals in the Matrikon Simulation Server. You can achieve this using the
following steps:

1 Ensure that you are viewing the hierarchical name space.

2 Expand the Simulation items node. You will see all the signal types that the
Matrikon Server simulates.

3 Expand the Saw-toothed Waves node. A number of leaf nodes appear. A leaf
node contains no other nodes, and usually signifies a tag on an OPC server.

4 Select the Real8 leaf node. You will see the properties of the server item in
the properties table below the name space tree, as shown in the following
figure.

Example of Server Tag Properties

Note the Item Canonical DataType property, which is double. The
Canonical DataType is the data type that the server uses to store the server
item’s value.

Item Canonical
DataType
property
4

Example: Basic OPC Toolbox Acquisition Procedure
5 Select the UInt2 leaf node. You will notice that the properties update, and
the Item Canonical Datatype property for this server item is uint16.
(MATLAB denotes integers with the number of bits in the integer, such as
uint16; the Matrikon Server uses the COM Variant convention denoting the
number of bytes, such as UInt2).

You can continue browsing the server name space using the Server
Namespace panel in the GUI. One unique characteristic of the Matrikon
Simulation Server is that you can view the connected clients through the name
space, by selecting the Clients node in the root of the name space.

In Step 7, you will add three items to your newly created group object, using
the Server Namespace panel.

Command-Line Equivalent
From the command line, you can “browse” the server name space using the
serveritems function. You need to supply a connected opcda client object to the
serveritems function, and an optional string to limit the returned results. The
string can contain wildcard characters (*). An example of using serveritems
is as follows.

sawtoothItems = serveritems(da, '*Saw*')

sawtoothItems =
 'Saw-toothed Waves.'
 'Saw-toothed Waves.Int1'
 'Saw-toothed Waves.Int2'
 'Saw-toothed Waves.Int4'
 'Saw-toothed Waves.Money'
 'Saw-toothed Waves.Real4'
 'Saw-toothed Waves.Real8'
 'Saw-toothed Waves.UInt1'
 'Saw-toothed Waves.UInt2'
 'Saw-toothed Waves.UInt4'

The command-line equivalent for obtaining the server item properties is
serveritemprops. See the serveritemprops reference page for more
information on using the function.
2-15

2 Quick Start: Using the OPC Tool GUI

2-1
Step 7: Add OPC Data Access Items to the Group
Now that you have found the server items in the name space, you can add Data
Access Item objects (daitem object) for those tags to the dagroup object you
created in Step 5. A daitem object is a link to a tag in the name space, providing
the tag value, and additional information on that item, such as the Canonical
Data Type.

Using the GUI, you create items directly from the name space tree, using a
context menu on each node in the tree.

Browse to Simulated Items -> Saw-toothed Waves -> Real8, and right-click
on that node to bring up the context menu. Selecting Add to from the context
menu provides you with a list of created groups for the item associated with
that server, and a menu item to create a New group (and add the item to that
group). The menu displayed for this example is shown in the following figure.

Example of Context Menu for Namespace Node

Click on Group0 to add the item to the already existing group that you created
in Step 5. A daitem object is created in the OPC Toolbox Objects panel. The
following figure shows the newly created item highlighted, with the properties
of the item shown in the Properties panel.
6

Example: Basic OPC Toolbox Acquisition Procedure
Example of Data Access Item Object and Properties

Reading a Value from the Server
A daitem object initially contains no information about the server item that it
represents. The daitem object only updates when the server notifies the client
of a change in status for that item (the notification is called a data change
event) or the client specifically reads a value from the server. Using the GUI,
you can force a read of the item by clicking Read in the Properties panel of the
required item.

Click Read. The Value, Quality, and Timestamp fields in the GUI will update.
Value contains the last value that the server read from that particular item.
Quality provides a measure of how meaningful Value is. If Quality is Good,
then the Value can be trusted to be the same as the device or object to which
the item refers, but only at the time provided by the Timestamp field. If
Quality is anything other than Good, then the Value of the item is
questionable.

Each time you read or obtain data from the server through a data change event,
the server will provide you with updated Value, Quality, and Timestamp
values.
2-17

2 Quick Start: Using the OPC Tool GUI

2-1
Adding More Items to the Group
Using the Namespace panel, expand the Triangle Waves node and add items
for the Real8 and UInt2 server items. You will then have three items
associated with your dagroup object. In Step 8, you configure a logging session
for that group. You then log data in Step 9 from the three items you just
created, and visualize the data in Step 10.

Command-Line Equivalent
You use the additem function to add items to a dagroup object. You need to pass
the dagroup object to which the items will be added, and the fully qualified item
ID as a string. The item IDs were found using the serveritems function in
Step 6.

itm1 = additem(grp, 'Saw-toothed Waves.Real8')

itm1 =
 OPC Item Object: Saw-toothed Waves.Real8
 Object Parameters
 Parent: Group0
 AccessRights: read/write
 DataType: double
 Object Status
 Active: on
 Data:
 Value:
 Quality:
 Timestamp:

You can add multiple items to the group in one additem call, by specifying
multiple ItemID values in a cell array.

itms = additem(grp, {'Triangle Waves.Real8', ...
'Triangle Waves.UInt2'})

itms =
 OPC Item Object Array:
 Index: DataType: Active: ItemID:
 1 double on Triangle Waves.Real8
 2 uint16 on Triangle Waves.UInt2
8

Example: Basic OPC Toolbox Acquisition Procedure
For more information on adding items to groups, see “Creating Data Access
Item Objects” on page 3-5.

Step 8: View All Item Values
You can view the Value, Quality, and Timestamp for each item using the item’s
properties panel. However, that view only provides access to one item at a time.
The group object is designed to allow you to read and write values from all
items in the group, and to log data to memory and/or disk. You use the Group
Read/Write panel to view the values of the items you created in Step 7 to
determine the approximate range of values that each item’s value varies over.
The information from this panel will help you to verify that the data is
updating, and whether you can plot the data in one set of axes or in subplots.

Click on Group0 in the OPC Toolbox Objects panel. Select the Read/Write
tab in the top of the Group properties panel. The OPC Toolbox Objects panel
should now look similar to the one shown in the following figure.

Example of Group Read/Write Panel

Control how often
group receives
updated values.

Group value,
quality, and
timestamp shown.

Select items to be
updated and
written.

Enter value to
write.
2-19

2 Quick Start: Using the OPC Tool GUI

2-2
The Value, Quality, and Timestamp values in the table of items will
continually update as long as you have Subscription enabled. Subscription
controls whether data change events are sent by the OPC server to the OPC
Toolbox, for items whose values change. UpdateRate and DeadbandPercent
define how often the items must be queried for a new value, and whether all
value changes or only changes of a specified magnitude are sent to the OPC
Toolbox. For more information on Subscription, see “Data Change Events and
Subscription” on page 4-11.

By observing the data for a while, you will see that the three signals appear to
have similar ranges. This indicates that you can visualize the data in the same
axes when you plot it in Step 11.

You can also use the Group Read/Write panel for writing values to many items
simultaneously. Specify a value in the Write column of the Item data table for
each item you want to write to, and click Write, to be able to write to those
items.

In Step 10 you will configure a logging task and log data for the three items.

Command-Line Equivalent
You can use the read function with a group object as the first parameter to read
values from all items in a group. The read function is discussed in more detail
in “Reading and Writing Data” on page 4-2.

Step 9: Configure Group Properties for Logging
Now that your dagroup object contains items, you can use the group to control
the interaction of those items with the server. In this step, you configure the
group to log data from those items for 2 minutes at 0.2-second intervals. You
will use the logged data in Step 11 to visualize the signals produced by the
Matrikon Simulation Server.

OPC Data Access Servers provide access only to “live” data (the last known
value of each server item in their name space). In many cases, a single value of
a signal is not useful, and a time series containing the signal value over a
period of time is helpful in analyzing that signal or signal set. The OPC Toolbox
allows you to log all items in a group to disk or memory, and to retrieve that
data for analysis in MATLAB.

You configure a logging session using the dagroup object. By modifying the
properties associated with logging, you control how often the data must be sent
0

Example: Basic OPC Toolbox Acquisition Procedure
from the server to the client, how many records the group must log, and where
to log the data. This information is summarized in the Logging panel of the
dagroup object properties in the GUI.

Select the Logging tab in the Properties panel. The following figure shows the
Logging panel for the dagroup object created in this example.

Example of Logging Panel for Data Access Group Objects

Using the Logging panel, configure the logging session using the following
steps:

1 Set the Update rate to 0.2.

2 Set the Number of records to log to 600. Because you want to log for
2 minutes (120 seconds) at 0.2-second update rates, you need 600 (i.e.,
120/0.2) records.

Specify update
rate and duration
of logging task.

Specify logged
data destination
options.

Specify data
export and plot
behavior.

Control logging task
and perform data
export/visualization.
2-21

2 Quick Start: Using the OPC Tool GUI

2-2
You can leave the rest of the logging properties at their default values, because
this example uses data logged to memory.

In Step 10 you log the data. In Step 11 you will visualize the data.

Command-Line Equivalent
You use the set function to set OPC Toolbox object properties. From the
MATLAB command line, you can calculate the number of records required for
the logging task.

logDuration = 2*60;
logRate = 0.2;
numRecords = ceil(logDuration./logRate)
set(grp, 'UpdateRate',logRate,'RecordsToAcquire',numRecords);

Step 10: Log OPC Server Data
In Step 9 you configured the dagroup object’s logging properties. Your object is
now ready to log the required amount of data to memory.

Click Start in the Logging tab. The logging task will begin, and the OPC
Toolbox engine will receive and store the data from the OPC server. The
progress bar indicates the status of the logging task, as shown in the following
figure.

Example of Logging Task in Progress

Note The logging task occurs in the background. You can continue working
in MATLAB while a logging task is in operation. The logging task is not
affected by any other computation taking place in MATLAB, and MATLAB is
not blocked from processing by the logging task.

Wait for the task to complete before continuing with Step 11.
2

Example: Basic OPC Toolbox Acquisition Procedure
Command-Line Equivalent
You use the start function with the required dagroup object to start a logging
task.

start(grp)

Although the logging operation takes place in the background, you can instruct
MATLAB to wait for the logging task to complete, using the wait function.

wait(grp)

Step 11: Plot the Data
In this introductory example, you use the GUI to visualize the data logged in
Step 10. In a more complex task, you would export the logged data to the
workspace and use MATLAB functions to analyze and interpret the logged
data.

When the logging task stops, the Logging panel will update to show that the
task is complete. An example of the logging status portion of the Logging panel
after a completed task is shown in the following figure.

Example of Logging Panel After Logging has Completed

To view the data from the GUI, click Plot. The logged data will be retrieved
from the OPC Toolbox Engine and displayed in a MATLAB figure window. The
format of the displayed data and annotation options are controlled by settings
in the Plot options frame of the Logging panel. By default, the plot will be
annotated with any data points that have a Quality other than Good. Values
whos Quality is Bad are annotated with a large red circle with a black border,
and Values with Quality of Repeat are annotated with a yellow star. You
should always view the Quality returned with the Value of an item to
determine if the Value is meaningful or not. The relationship between the
Value and Quality of an item is discussed in “Understanding OPC Data: Value,
Quality, and TimeStamp” on page 5-2.
2-23

2 Quick Start: Using the OPC Tool GUI

2-2
An example of the plotted data is shown in the next figure.

Example of Data Plot from a Logging Task

Note Your plotted data will almost certainly not look like the one shown
here, because the logging task was executed at a different time.

Notice how the three signals seem almost completely unrelated, except for the
period of the two Real8 signals. The peak values for each signal are different,
as are the periods for the two Triangle Waves signals. By visualizing the data,
we have gained some insight into the way the Matrikon OPC Simulation
Server simulates each tag. In this case, we know for certain that Real8 and
UInt2 signals have a different period.

Command-Line Equivalent
When your logging task has completed you transfer data from the OPC Toolbox
engine to the MATLAB workspace using the getdata function, which provides
two types of output, depending on the 'datatype' argument. For more
information see getdata in the reference pages. In this case you retrieve the
data into separate arrays, and plot the data.

The example below reproduces the figure display that you get when you click
Plot.

Quality of this
value is 'Repeat'
(repeated data)

Quality of this
value is 'Bad'
4

Example: Basic OPC Toolbox Acquisition Procedure
[logIDs, logVal, logQual, logTime, logEvtTime] = ...
getdata(grp, 'double');

plot(logTime, logVal);
axis tight
datetick('x', 'keeplimits')
legend(logIDs)

Step 12: Clean Up
When you are finished with an OPC task, you should remove the task objects
from memory and clear the MATLAB workspace of the variables associated
with these objects. The OPC Tool GUI will automatically delete all objects that
it creates from the OPC Toolbox engine. If you work only in the OPC Tool GUI,
you do not need to perform any further cleanup other than to close the GUI.
You close the GUI by using the Exit option in the File menu, or by using the
Close button in the title bar. You will be prompted to save the OPC Tool
session. You can choose to save the session to an OPC Session File (.osf file)
for later use, or exit without saving.

Command-Line Equivalent
When you use OPC Toolbox objects from the MATLAB command line, or from
your own functions, you must remove them from the OPC Toolbox engine using
the delete function. Note that when you delete an OPC Toolbox object, the
children of that object are automatically removed from the OPC Toolbox
engine. In the following example, there is no need to delete grp and itm, as they
are children of da.

disconnect(da)
delete(da)
clear da grp itm
close(gcf)

OPC Toolbox object management is discussed in more detail in “Deleting
Objects” on page 3-22.
2-25

2 Quick Start: Using the OPC Tool GUI

2-2
6

3

Using OPC Toolbox
Objects

To interact with an OPC server, you need to create OPC Toolbox objects. You create an OPC Data
Access Client (opcda client object) to provide a connection to a particular OPC server. You then create
one or more Data Access Groups (dagroup objects) to control sets of Data Access Items (daitem
objects), which represent links to server items. OPC Toolbox objects are described in more detail in
“Understanding the OPC Toolbox Object Hierarchy” on page 1-5.

This chapter describes how to create and configure OPC Toolbox objects to interact with an OPC
server. Chapter 4, “Reading, Writing, and Logging OPC Data” provides information on how to use the
OPC Toolbox objects to exchange data with an OPC server.

Creating OPC Toolbox Objects (p. 3-2) Describes how to create OPC Toolbox objects.

Configuring OPC Toolbox Properties
(p. 3-16)

Describes how to configure OPC Toolbox object
properties.

Deleting Objects (p. 3-22) Describes how to remove OPC Toolbox objects.

Saving and Loading Objects (p. 3-24) Describes how to save and load OPC Toolbox objects.

3 Using OPC Toolbox Objects

3-2
Creating OPC Toolbox Objects
The first step in interacting with an OPC server from MATLAB is to establish
a connection between the server and the OPC Toolbox. You create opcda client
objects to control the connection between an OPC server and the OPC Toolbox.
Then you create dagroup objects to manage sets of daitem objects, and then you
create the daitem objects themselves, which represent server items. A server
item corresponds to a physical device or to a storage location in a SCADA
system or DCS.

You must create OPC Toolbox objects in the order described above. “Connecting
to OPC Servers” on page 1-17 describes how to create an opcda client object.
This section discusses how to create and configure dagroup and daitem objects:

• “Creating Data Access Group Objects” on page 3-2 describes how to create
dagroup objects.

• “Creating Data Access Item Objects” on page 3-5 describes how to create
daitem objects.

• “Building an Object Hierarchy with a Disconnected Client” on page 3-8
describes how the OPC Toolbox behaves when you add groups and items to
a client that is disconnected.

• “Creating OPC Toolbox Object Vectors” on page 3-9 describes how to collect
multiple OPC Toolbox objects into a single variable to create an OPC Toolbox
object vector.

• “Working with Public Groups” on page 3-12 describes how you can use public
groups to share group configuration across multiple clients.

Creating Data Access Group Objects
Once you have created an opcda client object, you can add groups to the client.
A dagroup object manages multiple daitem objects. Using a dagroup object, you
can read data from all items in that group in one action, write data to the items
in the group, define actions to take when any of the items in that group change
value, or log data for all the items in that group for analysis and processing.

To create a dagroup object, you use the addgroup function, specifying the opcda
client object that you want to add the group to, and an optional group name.
See “Specifying a Group Name” on page 3-3 for rules on defining your own
group name.

Creating OPC Toolbox Objects
The example below creates an opcda client object, connects that object to the
server, and adds two groups to the client. The first group is automatically
named by the server, and the second group is given a specified name.

da = opcda('localhost', 'Matrikon.OPC.Simulation.1');
connect(da);
grp1 = addgroup(da);
grp2 = addgroup(da, 'MyGroup');

Specifying a Group Name
Every OPC server requires that each group created by the client has a unique
name. This allows the OPC server to uniquely identify the group when a client
makes a server request using that group. The name can be any nonempty
string.

You do not need to specify a group name for each group that you add to a client.
If you do not specify a name, the OPC server will automatically assign a group
name for you. Each OPC server defines different rules for automatic naming of
groups.

If you attempt to create a group with the same name as a group already created
for that client, an error will be generated.

See “Deleting Objects” on page 3-22 for information about how groups are
automatically named when you create groups with a disconnected client.

Viewing a Summary of a Group Object
To view a summary of the characteristics of the dagroup object you created,
enter the variable name you assigned to the object at the command prompt. For
example, this is the summary for the object grp1.
3-3

3 Using OPC Toolbox Objects

3-4
grp1

The items in this list correspond to the numbered elements in the object
summary:

1 The title of the Summary includes the name of the dagroup object. In the
example, this is the server-assigned name Group0.

2 The Object Parameters section lists the values of key dagroup object
properties. These properties describe the type of group, the daitem objects
associated with the group, the name of the group’s parent opcda client
object, and properties that control how the server updates item information
for this group. In the example, any items created in this group will be
updated at half-second intervals, with a deadband of 0%. For information on
how the server updates item information, see “Data Change Events and
Subscription” on page 4-11.

3 The Object Status section lists the current state of the object. A dagroup
object can be in one of several states:

- The Active state defines whether any operation on the group applies to
the item.

- The Subscription state defines whether changes in the item’s value or
quality will produce a data change event. See “Data Change Events and

grp1 =
Summary of OPC Data Access Group Object: Group0
 Object Parameters
 Group Type : private
 Item : 0-by-1 daitem object
 Parent : localhost/Matrikon.OPC.Simulation.1
 Update Rate : 0.5
 Deadband : 0%
 Object Status
 Active : on
 Subscription : on
 Logging : off
 Logging Parameters
 Records : 120
 Duration : at least 60 seconds
 Logging to : memory
 Status : Waiting for START.
 0 records available for GETDATA/PEEKDATA

1

2

3

4

Creating OPC Toolbox Objects
Subscription” on page 4-11 for more information about the Subscription
property.

- The Logging state describes whether the group is logging or not. See
“Logging OPC Server Data” on page 4-16 for information on how to log
data.

4 The Logging Parameters section describes the values of the logging
properties for that group. Logging properties control how the dagroup object
logs data, including the duration of the logging task and the destination of
logged data. See “Logging OPC Server Data” on page 4-16 for information on
logging data using dagroup objects.

Using a Group Object
A dagroup object with no items does not perform any useful functions. Once you
have added items to a group, you can use the group to

• Read data from, and write data to, the OPC server. See “Reading and Writing
Data” on page 4-2 for more information.

• Control how an OPC server notifies MATLAB about changes in any item
associated with a dagroup object. See “Data Change Events and
Subscription” on page 4-11 for more information.

• Log data from all items in that group, for later processing and analysis.
“Logging OPC Server Data” on page 4-16 describes how to control logging.

Creating Data Access Item Objects
A dagroup object provides a container for collecting one or more daitem objects.
A daitem object provides a link to a specific server item. The daitem object
defines how you want to retrieve and store the client-side value of the server
item, and also stores the last data retrieved from the server for that server
item. You can use a daitem object to read data from the server for that server
item, or to write values to that server item on the server.

You create a daitem object using the additem function, specifying the dagroup
object to which the item must be added and the fully qualified item ID of the
server item. You can obtain a list of the fully qualified item IDs for all server
items using the serveritems function.
3-5

3 Using OPC Toolbox Objects

3-6
The example below builds on the example in “Creating Data Access Group
Objects” on page 3-2 by adding a daitem object to the first group created in that
example. The server item associated with this item is called 'Random.Real8'.

itm1 = additem(grp1, 'Random.Real8');

Specifying a Local Data Type for the Item
When you create a daitem object, you create an object that stores the value of
the server item locally on the client. You can specify that the local storage data
type be different from the server storage data type. For example, you can
specify that a value stored on the server as an integer be stored in MATLAB as
a double-precision floating-point value, because you know that you will be
performing double-precision calculations with that item’s value.

Although it is possible to modify the data type of the item after it is created,
you can also create an item with a specific data type by specifying the data type
as the third parameter to the additem function. The data type specification
must be a string describing that data type. Valid OPC data types are any
MATLAB numeric data type, plus 'char', and 'logical'. See “Working with
Different Data Types” on page 5-16 for more information on supported data
types.

The example below adds another item to the group grp1 created by the example
in “Creating Data Access Group Objects” on page 3-2. The item ID is
'Random.UInt2', which is stored on the server as an unsigned 16-bit integer.
By specifying the data type as 'double', the value will be returned to MATLAB
and stored locally as a double-precision floating-point number.

itm2 = additem(grp1, 'Random.UInt2', 'double');

Note The conversion process from the server’s data type to the item’s data
type is performed by the server, using Microsoft COM Variant conversion
rules. If you attempt to convert a value to a data type that does not have that
value’s range, the OPC server will return an error when attempting to update
the value of that item. You should then change the data type to one that has
the same or larger range than the server item’s data type. See “Working with
Different Data Types” on page 5-16 for more information.

Creating OPC Toolbox Objects
Specifying the Active Status of an Item Object
You can optionally specify the Active status of an daitem object by passing a
string as the fourth parameter to the additem function. The Active status can
be 'on' or 'off'. An item with an Active status of 'off' behaves as if the item
was never created: No server updates of the item’s value will take place, and a
read or write with that item will fail. You use the Active status to temporarily
disable an item without deleting that item from MATLAB. For more
information on the Active status, see the reference page for the Active
property.

Viewing a Summary of the Item Object
To view a summary of the characteristics of the daitem object you created,
enter the variable name you assigned to the object at the command prompt. For
example, this is the summary for the object itm1.

itm1

The items in this list correspond to the numbered elements in the object
summary:

1 The title of the Summary includes the fully qualified item ID of the item. In
the example, the item is associated with the 'Random.Real8' server item.

2 The Object Parameters section lists the values of key daitem object
properties. These properties describe the name of the item’s Parent group,
and the Access Rights advertised by the server.

itm1 =
Summary of OPC Data Access Item Object: Random.Real8
 Object Parameters
 Parent : Group0
 Access Rights : read
 Object Status
 Active : on
 Data Parameters
 Data Type : double
 Value : 0
 Quality : Bad: Out of Service
 Timestamp : 08-Mar-2004 10:32:23

1

2

3

4

3-7

3 Using OPC Toolbox Objects

3-8
3 The Object Status section lists the Active state of the object. The Active
state defines whether any operation on the parent group applies to the item,
and whether you want to be notified of any changes in the item’s value.

4 The Data Parameters section lists the Data Type used by the daitem object
to store the value, and the Value, Quality, and Timestamp of the last value
obtained from the server for this item. For more information on the Value,
Quality, and Timestamp of an item, see “Understanding OPC Data: Value,
Quality, and TimeStamp” on page 5-2.

Using an Item Object
You create a daitem object to query the value of the associated server item, or
to write values to that server item. You can write values to a single item, and
read values from a single item, using the daitem object. For more information
on reading and writing values, see “Reading and Writing Data” on page 4-2.

You can also use the parent dagroup object to read and write values for all of
the daitem objects contained in that group, or to log changes in the item’s value
for a period of time. See “Logging OPC Server Data” on page 4-16 for
information on logging data.

Building an Object Hierarchy with a Disconnected
Client
When you create objects with a connected client, the OPC Toolbox validates
those objects with the OPC server before creating them on the client. For
example, when adding a group to the client using the addgroup function, the
validation process ensures that no other group with the same name exists on
the server, and that the server will accept the group. When adding an item, the
item ID is verified to be a valid server item.

Occasionally you may wish to build up an OPC Toolbox object hierarchy
without connecting to the server. For example, you may be off site and wish to
configure a logging task for use on the following day, rather than wait to
configure the objects for that task when you are on site.

The OPC Toolbox allows you to configure an entire OPC Toolbox object
hierarchy without connecting to the server. However, without a connection to
the server, the OPC Toolbox cannot validate the created objects with that
server. Instead, the OPC Toolbox will perform some basic validation on the

Creating OPC Toolbox Objects
objects you create, and revalidate those objects with the server when you
connect to the server.

When you create OPC Toolbox objects with a disconnected client, the following
validation is performed:

• When adding a group using the addgroup function, if you do not specify a
name, the OPC Toolbox automatically assigns a unique name 'groupN',
where N is the lowest integer that ensures that the group name is unique. For
example, the first group created will be 'group1', then 'group2', and so on.

• When you specify a group name when using the addgroup function, an error
will be generated if a group with the same name already exists.

• When adding an item to a group using the additem function, an error will be
generated only if an item with the same name already exists in that group.
No other checking is performed on the item.

• When adding an item to a group, if you do not specify a data type for that
item, the data type is set to 'unknown'. When you connect to the server, the
data type will be changed to the server item’s CanonicalDataType.

Despite all of the checks described above, the server may not accept all objects
created on a disconnected client when that client is connected to the server
using the connect function. For example, an item’s item ID may not be valid
for that server, or a group name may not be valid for that server. When you
connect a client to the server using connect, any objects that the server rejects
will be deleted from the object hierarchy, and a warning will be generated. In
this way, all objects on a connected client are guaranteed to have been accepted
by the server.

Creating OPC Toolbox Object Vectors
The OPC Toolbox supports the use of object vectors. An object vector is a single
variable in the MATLAB workspace containing a reference to more than one
object. For example, all the groups added to an opcda client object are stored in
the client’s Group property. The Group property contains a dagroup object
vector that represents all groups in that client. Similarly, a dagroup object has
an Item property that contains a reference to every daitem object created in the
group.
3-9

3 Using OPC Toolbox Objects

3-1
You can construct vectors using any of the standard concatenation techniques
available in MATLAB. However, the OPC Toolbox imposes some limitations on
the construction of object vectors:

• Objects must be the same class. For example, you can concatenate two
dagroup objects, but you cannot concatenate a dagroup object with a daitem
object.

• Group and item objects must have the same parent.

• One of the dimensions of the resulting array must be scalar. You can create
a column vector (m-by-1 objects) or a row vector (1-by-n objects), but not an
m-by-n matrix.

• The OPC Toolbox does not fill in missing elements in a vector. Instead, an
error is generated. For example, you cannot assign a scalar object at the 4th
index to a scalar object.

The following sections discuss how to create and use OPC Toolbox object
vectors:

• “Constructing Object Vectors” on page 3-10 describes how to create object
vectors.

• “Displaying a Summary of Object Vectors” on page 3-11 describes how object
vectors are displayed at the command line.

• “Using Object Vectors” on page 3-12 describes how you can use object vectors
with the OPC Toolbox.

Constructing Object Vectors
You can construct an object vector using any of the following techniques:

• Using concatenation of lists of individual object variables

• Using indexed assignment

• Using object properties to retrieve object vectors

Creating object vectors using concatenation. To construct an OPC Toolbox object
vector using concatenation, you use the normal MATLAB syntax for
concatenation. Create a list of all objects you want to create, and surround that
list with square brackets ([]). Separate each element of the object vector by
either a comma (,) to create a row vector, or a semicolon (;) to create a column
vector.
0

Creating OPC Toolbox Objects
The following example creates three fictitious opcda client objects, and
concatenates them into a row vector.

da1 = opcda('Host1','Dummy.Server.1');
da2 = opcda('Host2','Dummy.Server.2');
da3 = opcda('Host3','Dummy.Server.3');
dav = [da1, da2, da3];

Creating object vectors using indexed assignment. Indexed assignment refers to
creating vectors by assigning elements to specific indices in the vector. The
following example constructs the same three-element opcda client object vector
as in the previous example, using indexed assignment.

dav(1) = opcda('Host1','Dummy.Server.1');
dav(2) = opcda('Host2','Dummy.Server.2');
dav(3) = opcda('Host3','Dummy.Server.3');

Creating object vector using object properties. You may obtain an object vector if you
assign the Group property of a opcda client object, or the Item property of a
dagroup object, to a variable. If the client has more than one group, or the group
has more than one item, the resulting property is an object vector.

For information on obtaining object properties, see “Viewing the Value of a
Particular Property” on page 3-17.

Displaying a Summary of Object Vectors
To view a summary of an object vector, type the name of the object vector at the
command prompt. For example, this is the summary of the client vector dav.

dav =

 OPC Data Access Object Array:

 Index: Status: Name:
 1 disconnected Host1/Dummy.Server.1
 2 disconnected Host2/Dummy.Server.2
 3 disconnected Host3/Dummy.Server.3

The summary information for each OPC Toolbox Object class is different.
However, the basic display is similar.
3-11

3 Using OPC Toolbox Objects

3-1
Using Object Vectors
You use object vectors just as you would a normal object variable. The function
you call with the object vector simply gets applied to all objects in the vector.
For example, passing the client vector dav to the connect function connects
each object in the vector to its OPC server.

Note Some OPC Toolbox functions do not accept object vectors as arguments.
If you attempt to use an object vector with a function that does not accept
object vectors, an error will be generated. Consult the relevant function
reference page for information on whether a function supports object vectors.

If you need to extract elements of an object vector, use standard MATLAB
indexing notation. For example, the following example extracts the second
element from the client vector dav.

dax = dav(2);

Working with Public Groups
The OPC Data Access Specification provides a mechanism for sharing group
configuration amongst many clients. Normally, a client has private access to a
group; no other client connected to the same server can see that group, and the
items configured in that group. However, a client can define a group as public,
allowing other clients connected to the same server to gain access to that group.

Note The OPC Data Access Specification defines the support for public
groups as optional. Consequently, some OPC servers will not support public
groups.

A public group differs from a private group in the following ways:

• Once a group is defined as public, you cannot add items to that group, nor
remove items from the group. This restriction ensures that every client using
that public group has access to the same items, and does not need to worry
about items being added or removed from that group. You should ensure that
a group’s items are correct before making that group public.
2

Creating OPC Toolbox Objects
• Each client that accesses the public group is able to set its own group
properties, such as the UpdateRate, DeadbandPercent, Active, and
Subscription properties. For example, one client can define an UpdateRate
of 10 seconds for a public group, while another client specifies the
UpdateRate as 2 seconds.

• Each public group defined on a server must have a unique name. If you
attempt to create a public group with a name that is the same as a public
group on the server, an error is generated.

• A single client cannot have a public group and a private group with the same
name. For example, you cannot connect to a public group named 'LogGroup'
and then create a private group called 'LogGroup'.

Using the OPC Toolbox, you can define and publish your own public groups or
connect to existing public groups. You an also request that public groups be
removed from an OPC server. The following sections illustrate how you can
work with public groups using the OPC Toolbox:

• “Defining a New Public Group” on page 3-13 describes how you can create
new public groups.

• “Connecting to an Existing Public Group” on page 3-14 describes how you
can utilise a public group that is already defined on the server.

• “Removing Public Groups from the Server” on page 3-15 describes how you
can remove public groups from an OPC server.

Defining a New Public Group
You define a new public group by creating a private group in the normal way
(described in “Creating Data Access Group Objects” on page 3-2) and then
converting that private group into a public group.

You use the makepublic function to convert a private group into a public group.
The only argument to the makepublic function is the group object that you
want to convert to a public group.

The following example creates a private group, with specific items in that
group. The group is then converted into a public group.

da = opcda('localhost', 'My.Server.1');
grp = addgroup(da, 'PublicGrpExample');
itms = additem(grp, {'Item.ID.1', 'Item.ID.2'});
makepublic(grp);
3-13

3 Using OPC Toolbox Objects

3-1
You can check the group type using the GroupType property.

get(grp, 'GroupType')

ans =

public

Connecting to an Existing Public Group
In addition to creating new public groups, you can also create a connection to
an existing public group on the server. To obtain a list of available public
groups on a server, you use the opcserverinfo function, passing the client
object that is connected to the server as the argument. The returned structure
includes a field called 'PublicGroups', containing a cell array of public groups
defined on that server. If the 'PublicGroups' field is empty, then you should
check the 'SupportedInterfaces' field to ensure that the server supports
public groups. A server that supports public groups will implement the
IOPCServerPublicGroups interface.

Once you have a list of available public groups, you can create a connection to
that group using the addgroup function, passing it the client that is connected
to the server containing the public group, the name of the public group, and the
'public' group type specifier.

Note You cannot create a connection to an existing public group if your
client object is disconnected from the server.

The following example connects to a public group named 'PublicTrends' on
the server with program ID 'My.Server.1'.

da = opcda('localhost', 'My.Server.1');
connect(da);
pubGrp = addgroup(da, 'PublicTrends', 'public');

When you connect to a public group, the items in that group are automatically
created for you.

itm = get(pubGrp, 'Items');

itm =
4

Creating OPC Toolbox Objects
 OPC Item Object Array:

 Index: DataType: Active: ItemID:
 1 double on item.id.1
 2 uint16 on item.id.2
 3 double on item.id.3

You cannot add items to or remove items from a public group. However, you can
still modify the update rate of the group, the dead band percent, and the active
and subscription status of the group, and you can use the group to read, write,
or log data as you would for a private group.

When you have finished using a public group, you can use the delete function
to remove that group from your client object. Deleting the group from the client
does not remove the public group from the server; other clients might require
that group after you have finished with it. Instead, deleting the group from the
client indicates to the server that you are no longer interested in the group.

Removing Public Groups from the Server
You can request that a public group be removed from a server using the
removepublicgroup function, passing the client object that is connected to the
server and the name of the public group to remove.

Caution The OPC Data Access Specification does not provide any security
mechanism for removing public groups; any client can request that a public
group be removed. You should use this function with extreme caution!

If any clients are currently connected to that group, the server will issue a
warning stating that the group will be removed when all clients have finished
using the group.
3-15

3 Using OPC Toolbox Objects

3-1
Configuring OPC Toolbox Properties
All OPC Toolbox objects support properties that enable you to control
characteristics of the object:

• The opcda client object properties control aspects of the connection to the
OPC server, and event information obtained from the server. For example,
you can use the Timeout property to define how long to wait for the server to
respond to a request from the client.

• The dagroup object properties control aspects of the collection of items
contained within that group, including all logging properties. For example,
the UpdateRate property defines how often the items in the group must be
checked for value changes, as well as the rate at which data will be sent from
the server during a logging session.

• The daitem object properties control aspects of a single server item. For
example, you use the DataType property to define the data type that the
server must use to send values of that server item to the OPC Toolbox.

For all three OPC Toolbox objects, you can use the same toolbox functions to

• View a list of all the properties supported by the object, with their current
values

• View the value of a particular property

• Get information about a property

• Set the value of a property

Viewing the Values of Object Properties
To view all the properties of an OPC Toolbox object, with their current values,
use the get function.

If you do not specify a return value, the get function displays the object
properties in categories that group similar properties together. You use the
display form of the get function to view the value of all properties for the OPC
Toolbox object.

This example uses the get function to display a list of all the properties of the
OPC dagroup object grp.

get(grp)
6

Configuring OPC Toolbox Properties
 General Settings:
 DeadbandPercent = 0
 GroupType = private
 Item = []
 Name = group1
 Parent = [1x1 opcda]
 Tag =
 TimeBias = 0
 Type = dagroup
 UpdateRate = 0.5000
 UserData = []

 Callback Function Settings:
 CancelAsyncFcn = @opccallback
 DataChangeFcn = []
 ReadAsyncFcn = @opccallback
 RecordsAcquiredFcn = []
 RecordsAcquiredFcnCount = 20
 StartFcn = []
 StopFcn = []
 WriteAsyncFcn = @opccallback

 Subscription and Logging Settings:
 Active = on
 LogFileName = opcdatalog.olf
 Logging = off
 LoggingMode = memory
 LogToDiskMode = index
 RecordsAcquired = 0
 RecordsAvailable = 0
 RecordsToAcquire = 120
 Subscription = on

Viewing the Value of a Particular Property
To view the value of a particular property of an OPC Toolbox object, use the get
function, specifying the name of the property as an argument. You can also
access the value of the property as you would a field in a MATLAB structure.
3-17

3 Using OPC Toolbox Objects

3-1
This example uses the get function to retrieve the value of the Subscription
property for the dagroup object.

get(grp,'Subscription')

ans =

on

This example illustrates how to access the same property by referencing the
object as if it were a MATLAB structure.

grp.Subscription

ans =

on

Getting Information About Object Properties
To get information about a particular property, you can view the reference page
for the property in Chapter 9, “Property Reference.” You can also get
information about a particular property at the command line by using the
propinfo or opchelp functions.

The propinfo function returns a structure that contains information about the
property, such as its data type, default value, and a list of all possible values if
the property supports such a list. This example uses propinfo to get
information about the LoggingMode property.

propinfo(grp,'LoggingMode')

ans =

 Type: 'string'
 Constraint: 'enum'
 ConstraintValue: {'memory' 'disk' 'disk&memory'}
 DefaultValue: 'memory'
 ReadOnly: 'whileLogging'
8

Configuring OPC Toolbox Properties
The opchelp function returns reference information about the property with a
complete description. This example uses opchelp to get information about the
LoggingMode property.

opchelp(grp,'LoggingMode')

Setting the Value of an Object Property
To set the value of a particular property of an OPC Toolbox object, use the set
function, specifying the name of the property as an argument. You can also
assign the value to the property as you would a field in a MATLAB structure.

Note Because some properties are read-only, only a subset of the OPC
Toolbox properties can be set. Use the property reference pages or the
propinfo function to determine if a property is read-only.

This example uses the set function to set the value of the LoggingMode
property.

set(grp,'LoggingMode','disk&memory')

To verify the new value of the property, use the get function.

get(grp,'LoggingMode')

ans =

disk&memory

This example sets the value of a property by assigning the value to the object
as if it were a MATLAB structure.

grp.LoggingMode = 'disk';

grp.LoggingMode

ans =

disk
3-19

3 Using OPC Toolbox Objects

3-2
Viewing a List of All Settable Object Properties
To view a list of all the properties of an OPC Toolbox object that can be set, use
the set function.

set(grp)
 General Settings:
 DeadbandPercent
 Name
 Tag
 TimeBias
 UpdateRate
 UserData

 Callback Function Settings:
 CancelAsyncFcn: string -or- function handle -or- cell array
 DataChangeFcn: string -or- function handle -or- cell array
 ReadAsyncFcn: string -or- function handle -or- cell array
 RecordsAcquiredFcn: string -or- function handle -or- cell array
 RecordsAcquiredFcnCount
 StartFcn: string -or- function handle -or- cell array
 StopFcn: string -or- function handle -or- cell array
 WriteAsyncFcn: string -or- function handle -or- cell array

 Subscription and Logging Settings:
 Active: [{on} | off]
 LogFileName
 LoggingMode: [{memory} | disk | disk&memory]
 LogToDiskMode: [{index} | append | overwrite]
 RecordsToAcquire
 Subscription: [{on} | off]

When using the set function to display a list of settable properties, all
properties that have a predefined set of available values will have those values
shown after the property. The default value for these properties will be
enclosed in curly brackets ({}). For example, from the display shown above, you
can set the Subscription property for a dagroup object to 'on' or 'off', with
the default value being 'on'. You can set the LogFileName property to any
value.

Special Read-Only Modes
Some OPC Toolbox object properties change their read-only status, depending
on the state of an object (defined by another property of that object, or the
parent of that object). The two special read-only modes used by the OPC
Toolbox are
0

Configuring OPC Toolbox Properties
• 'whileConnected': These properties cannot be changed while the client is
connected to the OPC server. For example, the client’s Host property is
read-only while connected.

• 'whileLogging': These properties cannot be changed while the dagroup
object is logging. For example, the LoggingMode property is read-only while
logging. For more information on logging, see “Logging OPC Server Data” on
page 4-16.

• 'whilePublic': These properties cannot be changed because the group is a
public group. For more information on public groups, see “Working with
Public Groups” on page 3-12.

Note Properties that modify their read-only state are always displayed when
using set to display settable properties, even when they cannot be changed
because of the state of the object.

To determine if a property has a modifiable read-only state, use the propinfo
function.
3-21

3 Using OPC Toolbox Objects

3-2
Deleting Objects
When you finish using your OPC Toolbox objects, use the delete function to
remove them from memory. After deleting them, clear the variables that
reference the objects from the MATLAB workspace by using the clear
function.

Note When you delete an opcda client object, all the group and item objects
associated with the opcda client object are also deleted. Similarly, when you
delete a dagroup object, all daitem objects associated with that dagroup object
are deleted.

To illustrate the deletion process, this example creates several opcda client
objects and then deletes them.

Step 1: Create several clients. This example creates several opcda client objects
using fictitious host and server ID properties.

da1 = opcda('Host1','Dummy.Server.1');
da2 = opcda('Host2','Dummy.Server.2');
da3 = opcda('Host3','Dummy.Server.3');

Step 2: Delete clients. Always remove OPC Toolbox objects from memory, and the
variables that reference them, when you no longer need them.

You can delete OPC Toolbox objects using the delete function.

delete(da1)
delete(da2)
delete(da3)

Note that the variables associated with the objects remain in the workspace.

whos
Name Size Bytes Class

 da1 1x1 636 opcda object
 da2 1x1 636 opcda object
 da3 1x1 636 opcda object
2

Deleting Objects
These variables are not valid OPC Toolbox objects.

isvalid(da1)

ans =
0

To remove these variables from the workspace, use the clear command.

Note You can delete OPC Toolbox object vectors using the delete function.
You can also delete individual elements of an OPC Toolbox object vector.
3-23

3 Using OPC Toolbox Objects

3-2
Saving and Loading Objects
Using the save command, you can save an OPC Toolbox object to a MAT-file,
just as you would any workspace variable. This example saves the dagroup
object grp to the MAT-file myopc.mat.

save myopc grp

When you save an OPC Toolbox object, all the OPC Toolbox objects in that
object hierarchy are also saved. For example, if you save a dagroup object, the
client, all groups associated with that client and all items created in those
groups are saved along with the dagroup object. However, only those objects
you elect to save will be created in the MATLAB workspace. Other objects will
be created with no reference to them in the workspace. To obtain a reference to
an existing OPC Toolbox object, use the opcfind function.

To load an OPC Toolbox object that was saved to a MAT-file into the MATLAB
workspace, use the load command. For example, to load grp from MAT-file
myopc.mat, use

load myopc

Note The values of read-only properties are not saved. When you load an
OPC Toolbox object into the MATLAB workspace, read-only properties revert
back to their default values. To determine if a property is read-only, use the
propinfo function or read the property reference page.
4

4

Reading, Writing, and
Logging OPC Data

The core of any OPC Toolbox application is the exchange of data between MATLAB and one or more
OPC servers. You create and configure OPC Toolbox objects to support the reading, writing, and data
logging functions that you require for your application.

Using the OPC Toolbox you can exchange data with an OPC server in a number of ways. You can read
and write data from the MATLAB command line or other MATLAB functions. You can configure OPC
Toolbox objects to automatically run MATLAB code when the server notifies the objects that data has
changed on the server. You can also log changes in OPC server data to a disk file or to memory, for
further analysis.

This chapter provides information on how to exchange data with an OPC server.

Reading and Writing Data (p. 4-2) Describes how to use group and item objects to read and
write data synchronously and asynchronously.

Data Change Events and Subscription
(p. 4-11)

Describes how OPC servers generate data change events,
and how you can control data change event notification.

Logging OPC Server Data (p. 4-16) Describes how to log data from an OPC server for later
analysis and/or visualization.

4 Reading, Writing, and Logging OPC Data

4-2
Reading and Writing Data
Using the OPC Toolbox, you can exchange data with the OPC server using
individual items, or using the dagroup object to perform the operation on
multiple items. The reading and writing operation can be performed
synchronously, so that MATLAB will wait for the operation to complete, or
asynchronously, allowing MATLAB to continue processing while the operation
takes place in the background. This section discusses reading and writing data
in the following sections:

• “Reading Data from an Item” on page 4-2 discusses how to read individual
values from an daitem object.

• “Writing Data to an Item” on page 4-6 describes how to write data to an
individual item.

• “Reading and Writing Multiple Values” on page 4-7 discusses how to use the
dagroup object to perform read and write operations on multiple items in one
operation.

Reading Data from an Item
You can read data from any item that is associated with a connected client.
When you perform the read operation on an item, the server will return
information about the server item associated with that item ID. The read
operation can be performed synchronously or asynchronously:

• “Using Synchronous Read Operations” on page 4-2 describes how to perform
synchronous read operations. Synchronous read operations can request data
from the server’s cache, or directly from the device.

• “Using Asynchronous Read Operations” on page 4-5 describes how to
perform asynchronous read operations.

Using Synchronous Read Operations
A synchronous read operation means that MATLAB will wait for the server to
return data from a read request before continuing processing. The data
returned by the server can come from the server’s cache, or you can request
that the server read values from the device that the server item refers to.

You use the read function to perform synchronous read operations, passing the
daitem object associated with the server item you want to read. The data is

Reading and Writing Data
returned in a structure containing information about the read operation,
including the value of the server item, the quality of that value, and the time
that the server obtained that value.

The following example creates an opcda client object and configures a group
with one item, 'Random.Real8'. A synchronous read operation is then
performed on the item.

da = opcda('localhost', 'Matrikon.OPC.Simulation.1');
connect(da);
grp = addgroup(da);
itm1 = additem(grp, 'Random.Real8');
r = read(itm1)

r =

 ItemID: 'Random.Real8'
 Value: 4.3252e+003
 Quality: 'Good: Non-specific'
 TimeStamp: [2004 3 2 9 50 26.6710]
 Error: ''

Specifying the Source of the Read Operation. By default, a synchronous read
operation will return data from the OPC server’s cache. By reading from the
cache, you do not have to wait for a possibly slow device to provide data to the
server. You can specify the source of the synchronous read operation as the
second parameter to the read function. If the source is specified as 'device',
the server will read a value from the device, and return that value to you (as
well as updating the server cache with that value).

Note Reading from the device may be slow. If the read operation generates a
time-out error, you may need to increase the value of the Timeout property of
the opcda client object associated with the group or item in order to support
synchronous reads from the device.
4-3

4 Reading, Writing, and Logging OPC Data

4-4
The following example reads data from the device associated with itm1.

r = read(itm1, 'device')

r =

 ItemID: 'Random.Real8'
 Value: 9.1297e+003
 Quality: 'Good: Non-specific'
 TimeStamp: [2004 3 2 10 8 20.2650]
 Error: ''

Reading from the Cache with Inactive Items. In order to reduce communication traffic
and speed up data access, OPC servers do not store all server item values in
their cache. Only those server items that are active will be stored in the server
cache. Therefore, synchronous read operations from the cache on an inactive
item will return data that may not correspond to the current device value. If
you attempt to read data from an inactive item using the read function, and do
not specify 'device' as the source, the Quality will be set to 'Bad: Out of
Service'.

You control the active status of an item using the Active property.

The following example sets the Active property of the item to 'off' and
attempts to read from the cache.

itm1.Active = 'off';
r = read(itm1)

Warning: One or more items is inactive.
(Type "warning off opc:read:iteminactive" to suppress this
warning.)

r =

 ItemID: 'Random.Real8'
 Value: 8.4278e+003
 Quality: 'Bad: Out of Service'
 TimeStamp: [2004 3 2 10 17 19.9370]
 Error: ''

Reading and Writing Data
Using Asynchronous Read Operations
An asynchronous read operation creates a request to read data, and then sends
that request to the server. Once the request has been accepted, MATLAB
continues processing the next instruction without waiting to receive any values
from the server. When the data is ready to be returned, the server sends the
data back to MATLAB by generating a read async event. MATLAB will handle
that event as soon as it is able to perform that task.

Asynchronous read operations always return data from the device.

By using an asynchronous read operation, you can continue performing tasks
in MATLAB while the value is being read from the device, and then process the
returned value when the server is able to provide it back to MATLAB.

You perform asynchronous read operations using the readasync function,
passing the daitem object that you want to read from. If successful, the function
will return a transaction ID, a unique identifier for that asynchronous
transaction. You can use that transaction ID to identify the read operation
when it is returned through the read async event.

The following example of using an asynchronous read operation uses the
default callback for a read async event. The default callback is set to the
opccallback function, which displays information about the event in the
command line.

tid = readasync(itm1)

tid =

 3

The transaction ID for this operation is 3. A little while later, the default
callback function displays the following information at the command line.

OPC ReadAsync event occurred at local time 10:44:49
Transaction ID: 3
Group Name: Group0
1 items read.

You can change the read async event callback function by setting the
ReadAsyncFcn property of the dagroup object. For more information on
callbacks and events, see Chapter 6, “Using Events and Callbacks.”
4-5

4 Reading, Writing, and Logging OPC Data

4-6
Writing Data to an Item
You can write data to individual items, or to groups of items. This section
describes how to write data to individual items. See “Reading and Writing
Multiple Values” on page 4-7 for information on using dagroup objects to write
data to multiple items.

You can write data to an OPC server using a synchronous write operation, in
which case MATLAB will wait for the server to acknowledge that the write
operation succeeds, or using an asynchronous write operation, in which case
MATLAB is free to continue performing other tasks while the write operation
takes place. Because write operations always apply directly to the device, a
synchronous write operation may take a significant amount of time,
particularly if the device that you are writing to has a slow connection to the
OPC server.

Using Synchronous Write Operations
You use the write function to perform synchronous write operations. The first
argument is the daitem object that represents the server item you want to
write to. The second argument is the value that you want to write to that server
item. The write function does not return any results, but will generate an error
if the write operation is not successful.

The following example creates an item with item ID 'Bucket Brigade.Real8'
and writes the value 10.34 to the item. The value is then read using a
synchronous read operation.

itm2 = additem(grp, 'Bucket Brigade.Real8');
write(itm2, 10.34)
r = read(itm2, 'device')

You do not need to ensure that the data type of the value you are writing, and
the data type of the daitem object, are the same. The OPC Toolbox relies on the
server to perform the conversion from the data type you provide, to the data
type required for that server item. For information on how the OPC Toolbox
handles different data types, see “Working with Different Data Types” on
page 5-16.

Using Asynchronous Write Operations
An asynchronous write operation creates a request to write data, and then
sends that request to the server. Once the request has been accepted, MATLAB

Reading and Writing Data
continues processing the next instruction without waiting for the data to be
written. When the write operation completes on the server, the server notifies
MATLAB that the operation completed by generating a write async event
containing information on whether the write operation succeeded, and an error
message if applicable. MATLAB will handle that event as soon as it is able to
perform that task.

You use the writeasync function to write values to the server asynchronously.
The first argument is the daitem object that represents the server item you
want to write to. The second argument is the value you want to write to that
server item. The return value is the transaction ID of the operation. You can
use the transaction ID to identify the write operation when it is returned
through the write async event.

The following example uses asynchronous operations to write the value 57.8 to
the item 'Bucket Brigade.Real8' created earlier.

tid = writeasync(itm2, 57.8)

tid =

 4

A while later, the standard callback (opccallback) will display the results of
the write operation to the command line.

OPC WriteAsync event occurred at local time 11:15:27
Transaction ID: 4
Group Name: Group0
1 items written.

You can change the write async event callback function by setting the
WriteAsyncFcn property of the dagroup object. For more information on events
and callbacks, see Chapter 6, “Using Events and Callbacks.”

Reading and Writing Multiple Values
When you use the read and write operation on a single daitem object, you read
or write a single value per transaction. The OPC Toolbox allows you to perform
one operation to read multiple item values, or to write multiple values. You can
also use a dagroup object to read and write values using all items in the group,
or you can perform read and write operations on item object vectors.
4-7

4 Reading, Writing, and Logging OPC Data

4-8
A daitem object vector is a single variable in the MATLAB workspace
containing more than one daitem object. You can construct item vectors using
any of the standard concatenation techniques available in MATLAB. See
“Creating OPC Toolbox Object Vectors” on page 3-9 for information on creating
and working with OPC Toolbox object vectors.

When you perform any read or write operation on a dagroup object, it is the
equivalent of performing the operation on the Item property of that group,
which is a daitem object vector representing all items that are contained within
the dagroup object.

The following sections describe how to perform read and write operations on
multiple items:

• “Reading Multiple Values” on page 4-8 describes how to read multiple values
from an item vector or dagroup object.

• “Writing Multiple Values” on page 4-9 describes how to write multiple values
to an item vector or dagroup object.

• “Error Handling for Multiple Item Read and Write Operations” on page 4-10
explains how the OPC Toolbox deals with errors when performing read and
write operations on multiple objects.

Reading Multiple Values
The following sections describe how synchronous read operations and
asynchronous read operations behave for multiple items.

Synchronous Read Operations. When you read multiple values using the read
function, the returned value will be a structure array. Each element of the
structure will contain the same fields. One of the fields is the item ID that the
information in that element of the structure refers to.

The following example performs a synchronous read operation on the dagroup
object created in the previous examples in this section.

r = read(grp)

r =

2x1 struct array with fields:
 ItemID
 Value

Reading and Writing Data
 Quality
 TimeStamp
 Error

To display the first record in the structure array, use indexing into the
structure.

r(1)

ans =

 ItemID: 'Random.Real8'
 Value: 3.7068e+003
 Quality: 'Good: Non-specific'
 TimeStamp: [2004 3 2 11 49 52.5460]
 Error: ''

To display all values of a particular field, you can use the list generation syntax
in MATLAB. Enclosing that list in a cell array groups the values into one
variable.

{r.Value}

ans =

 {3.7068e+003 10}

Asynchronous Read Operations. When you read multiple values using the
readasync function, the return value is still a single transaction ID. The
multiple values will be returned in the read async event structure passed to the
ReadAsyncFcn callback. For information on the structure of the read async
event, see “Event Types” on page 6-4.

Writing Multiple Values
When you perform a write operation on multiple items you need to specify
multiple values, one for each item you are writing to. The OPC Toolbox
requires these multiple values to be in a cell array, since the data types for each
value may be different. For information on constructing cell arrays, see
MATLAB Programming.
4-9

4 Reading, Writing, and Logging OPC Data

4-1
Note Even if you are using the same data type for every value being written
to the dagroup object or daitem object vector, you must still use a cell array to
specify the individual values. Use the num2cell function to convert numeric
arrays to cell arrays.

The following example writes values to a dagroup object containing two items.

write(grp, {1.234, 5.43})

Error Handling for Multiple Item Read and Write Operations
When reading and writing with multiple items, an error generated by
performing the operation on one item will not automatically generate an error
in MATLAB. The following rules apply to reading and writing with multiple
items:

• If all items fail the operation, an error will be generated. The error message
will contain specific information for each item about why the item failed.

• If some items fail but some succeed, the operation does not error, but
generates a warning, listing which items failed and the reason for failure.

Note that for asynchronous read and write operations, items may fail early
(during the request for the operation) or late (when the information is returned
from the server). If any items fail late, an error event will be generated in
addition to the read async event or write async event.
0

Data Change Events and Subscription
Data Change Events and Subscription
Using the read and readasync functions described in “Reading Data from an
Item” on page 4-2, you can obtain information about OPC server item values
upon request. The OPC Data Access specification provides another mechanism
for clients to get information on server item values. This mechanism allows the
OPC server to notify a client when a server item’s value or quality has updated.
This mechanism is called a data change event. The OPC Toolbox supports data
change event notification by executing a MATLAB function when a data
change event is received from a connected OPC server. This section describes
how to use the data change event notification.

The following sections describe how to use data change notification in the OPC
Toolbox:

• “Configuring OPC Toolbox Objects for Data Change Events” on page 4-11
describes how to set up OPC Toolbox object properties to control when a
server will send data change events to the OPC Toolbox.

• “How the OPC Toolbox Processes Data Change Events” on page 4-14
describes how the OPC Toolbox processes data change events.

• “How to Customize the Data Change Event Response” on page 4-14 describes
how to configure OPC Toolbox object properties so that your own MATLAB
function is called in response to a data change event.

Configuring OPC Toolbox Objects for Data Change
Events
A data change event occurs at the dagroup object level. Using dagroup object
properties, you can control whether a data change event is generated for a
particular group, the minimum time between successive events, and the
MATLAB function to run when the event notification is received and processed
by the OPC Toolbox. You can also control which items in a particular group
should be monitored for data changes. In this way, you can control the number
and frequency of data change events that MATLAB has to process. On a busy
OPC server, you can also turn off data change notification for groups that you
are not currently interested in.
4-11

4 Reading, Writing, and Logging OPC Data

4-1
The following sections describe how to control data change notification.

• “Controlling Data Change Notification for a Group” on page 4-12 describes
how to turn off data change notification for a dagroup object.

• “Temporarily Disabling Items in a Group” on page 4-13 describes how to
control which items in a group must be monitored for data changes.

• “How to Customize the Data Change Event Response” on page 4-14 provided
information on how to configure the MATLAB function to run when a data
change event occurs.

Controlling Data Change Notification for a Group
The following properties of a dagroup object control whether a server notifies
the group of data changes on items in that group:

• UpdateRate: The UpdateRate property defines the rate at which an OPC
server must monitor server item values and generate data change events.
Even if a server item’s value changes more frequently than the update rate,
the OPC server will only generate a data change at the interval specified by
the update rate.

• Subscription: The Subscription property defines whether the OPC server
will generate a data change event for the group. When you create a dagroup
object, the Subscription property is set to 'on'. When you set the
Subscription property to 'off', you tell the OPC server not to generate
data change events for that group.

• Active: The Active property must be 'on' for data change events to be
generated. When you create a dagroup object, the Active property is set to
'on'. When you set the Active property to 'off', you remove any ability to
read data from the group, whether through read operations or data change
events.
2

Data Change Events and Subscription
A summary of group read, write, and data change behavior for the Active and
Subscription properties is given in the following table.

Temporarily Disabling Items in a Group
You can temporarily disable items in a group without deleting the item from
the group. When you disable a daitem object, the OPC server no longer
monitors changes in the associated server item’s value, and will therefore not
generate data change events when the value of that server item changes.

You can disable a daitem object by setting that object’s Active property to
'off'. You can reenable the daitem object by setting the Active property to
'on'.

Forcing a Data Change Event
You can force an OPC server to generate a data change event for all active
items in a group by using the refresh function with the dagroup object as the
first argument. The OPC server will generate a data change event containing
information for every active item in the group.

You can pass an optional second argument to the refresh function to instruct
the OPC server where to source the data values that are sent back in the data
change event. By specifying a source of 'device', you instruct the OPC server
to update the values from the device. By specifying a source of 'cache' (the
default) you instruct the OPC server to return values from the OPC server’s
cache.

Active Subscription Read Write Data
Change

'on' 'on' Yes Yes Yes

'on' 'off' Yes Yes No

'off' 'on' No No No

'off' 'off' No No No
4-13

4 Reading, Writing, and Logging OPC Data

4-1
How the OPC Toolbox Processes Data Change
Events
The OPC Toolbox uses data change events for a number of tasks. The following
activities take place when a data change event occurs:

1 The Value, Quality, and TimeStamp properties of the daitem object are
automatically updated. For more information on these properties, see
“Understanding OPC Data: Value, Quality, and TimeStamp” on page 5-2.

2 If the dagroup object is logging, the data change event is logged to memory
and/or disk as a record. For information on logging, see “Logging OPC Server
Data” on page 4-16.

3 If the dagroup object’s DataChangeFcn property is not empty, that function
is called with the data change event information. By default, this property
is empty, since data change events occur frequently. You can customize the
behavior of the OPC Toolbox by setting this property to call a function that
you choose. For information on the data change event, see the reference page
for the DataChangeFcn property.

Note If you disable data change events by setting the Subscription property
to 'off' or the Active property to 'off', none of the activities listed above
can take place. You cannot change the Active or Subscription properties
while a dagroup object is logging, otherwise the logging task may never
complete.

How to Customize the Data Change Event Response
One of the activities that occurs when the OPC Toolbox receives a data change
event from the OPC server is the running of the function defined in the
DataChangeFcn property. By setting this property to a the name of a function
that you have written, you can fully customize the data change event behavior
of the OPC Toolbox. For example, you may configure a dagroup object to
monitor a server item that is updated from an operator interface. By pushing
a button on the operator interface, the server item value will change, initiating
a data change event on that group. By configuring the DataChangeFcn property
to run a MATLAB function that performs control loop optimization, you can
4

Data Change Events and Subscription
allow an operator to initiate a control loop performance test on all critical
control loops in the plant.
4-15

4 Reading, Writing, and Logging OPC Data

4-1
Logging OPC Server Data
The OPC Data Access Specification, which the OPC Toolbox implements,
provides access to current values of data on an OPC server. Often, for analysis,
troubleshooting, and prototyping purposes, you will want to know how OPC
server data has changed over a period of time. For example, you can use time
series data to perform control loop optimization or system identification on a
portion of your plant. The OPC Toolbox provides a logging mechanism that
stores a history of data that changed over a period of time. This section
discusses how to configure and execute a logging task using the OPC Toolbox.

Note The OPC Toolbox logging mechanism is not designed to replace a data
historian or database application that logs data for an extended period.
Rather, the logging mechanism allows you to quickly configure a task to log
data on an occasional basis, where modifications to the plant-wide data
historian may be unfeasible.

The following sections describe the logging process:

• “How the OPC Toolbox Logs Data” on page 4-16 defines the mechanism used
to log OPC server data, and provides an overview of a logging task.

• “Configuring a Logging Session” on page 4-19 describes how to configure a
dagroup object for logging.

• “Executing a Logging Task” on page 4-22 describes how to control a logging
task.

• “Getting Logged Data into MATLAB” on page 4-24 describes how to extract
logged data.

How the OPC Toolbox Logs Data
The OPC Toolbox uses the data change event to log data. Each data change
event that is logged is called a record. The record contains information about
the time the client logged the record, and details about each item in the data
change event. Data change events are discussed in detail in “Data Change
Events and Subscription” on page 4-11.

The use of a data change event for logging means that you should consider the
following points when planning a logging session:
6

Logging OPC Server Data
• Logging takes place at the group level — When planning a logging task,
configure the group with only the items you need to log. Including more items
than you need to will only increase memory and/or disk usage, and using that
data may be more difficult due to unnecessary items in the data set.

• Inactive items in a group will not be logged — You must ensure that the
items you need to log are active when you start a logging session. You control
the active state of a daitem object using the Active property of the daitem
object.

• Data change events (records) may not include all items — A data change
event contains only the items in the group that have changed their value
and/or quality state since the last update. Hence, a record is not guaranteed
to contain every data item. You need to consider this when planning your
logging session.

• OPC logging tasks are not guaranteed to complete — Because data
change events only happen when an item in the group changes state on the
server, it is possible to start a logging task that will never finish. For
example, if the items in a group never change, a data change event will never
be generated for that group. Hence, no records will be logged.

• Logged data is not guaranteed to be regularly sampled — It is possible to
force a data change event at any time (see “Forcing a Data Change Event” on
page 4-13). If you do this during a logging task, the data change events may
occur at irregular sample times. Also, a data change event may not contain
information for every item in the group. Consequently, logged OPC server
data may not occur at regular sample times.

An overview of the logging task, and a representation of how the above points
impact the logging session, is provided in the following section.

Example: An Overview of a Logging Task
To illustrate a typical logging task, the following example logs to disk and
memory six records of data from two items provided by the Matrikon OPC
Simulation Server. During the logging task, data is retrieved from memory.
When the task stops, the remaining records are retrieved.

Step 1: Create the OPC Toolbox object hierarchy. This example creates a hierarchy of
OPC Toolbox objects for two items provided by the Matrikon Simulation
Server. To run this example on your system, you must have the Matrikon
4-17

4 Reading, Writing, and Logging OPC Data

4-1
Simulation Server installed. Alternatively, you can replace the values used in
the creation of the objects with values for a server you can access.

da = opcda('localhost','Matrikon.OPC.Simulation.1');
connect(da);
grp = addgroup(da,'CallbackTest');
itm1 = additem(grp,'Triangle Waves.Real8');
itm2 = additem(grp,'Saw-Toothed Waves.Boolean');

Step 2: Configure the logging duration. This example sets the UpdateRate value to 1
second, and the RecordsToAcquire property to 6. See “Controlling the
Duration of a Logging Session” on page 4-19 for more information on this step.

set(grp,'UpdateRate',1);
set(grp,'RecordsToAcquire',6);

Step 3: Configure the logging destination. In this example, data is logged to disk and
memory. The disk filename is set to LoggingExample.olf. The LogToDiskMode
property is set to 'overwrite', so that if the filename exists, the Toolbox
engine must overwrite the file. See “Controlling the Logged Data Destination”
on page 4-20 for more information on this step.

set(grp,'LoggingMode', 'disk&memory');
set(grp,'LogFileName', 'LoggingExample.olf');
set(grp,'LogToDiskMode','overwrite');

Step 4: Start the logging task. Start the dagroup object. The logging task is started,
and the group summary updates to reflect the logging status. See “Starting a
Logging Task” on page 4-22 for more information on this step.

start(grp)
grp

Step 5: Monitor the Logging Progress. After about 3 seconds, retrieve and show the
last acquired value. After another second, obtain the first two records during
the logging task. Then wait for the logging task to complete. See “Monitoring
the Progress of a Logging Task” on page 4-23 for more information on this step.

pause(3.5)
sPeek = peekdata(grp, 1);
% Display the local event time, item IDs and values
disp(sPeek.LocalEventTime);
disp({sPeek.Items.ItemID;sPeek.Items.Value});
8

Logging OPC Server Data
pause(1)
sGet = getdata(grp, 2);
wait(grp)

Step 6: Retrieve the data. This example retrieves the balance of the records into a
structure array. See “Retrieving Data from Memory” on page 4-25 for more
information on this step.

sFinished = getdata(grp, grp.RecordsAvailable);

Step 7: Clean up. When you no longer need them, always remove from memory
any OPC Toolbox objects and the variables that reference them. Deleting the
opcda client object also deletes the group and daitem objects.

disconnect(da)
delete(da)
clear da grp itm1 itm2

Configuring a Logging Session
A logging session is associated with a dagroup object. Before you start a logging
session, you will need to ensure that the logging session is correctly configured.
This section explains how you can control

• The duration of a logging session (see “Controlling the Duration of a Logging
Session” on page 4-19). By default a group will log approximately one minute
of data at half second intervals.

• The destination of logged data (see “Controlling the Logged Data
Destination” on page 4-20). By default a group will log data to memory.

• The response to events that take place during a logging session (see
“Configuring Logging Callbacks” on page 4-22). By default, a logging session
takes no action in response to events that take place during a logging session.

Controlling the Duration of a Logging Session
While you cannot guarantee that a logging session will take a specific amount
of time (see “How the OPC Toolbox Logs Data” on page 4-16), you can control
the rate at which the server will update the items and how many records the
logging task should store before automatically stopping the logging task. You
control these aspects of a logging task by using the following properties of the
dagroup object:
4-19

4 Reading, Writing, and Logging OPC Data

4-2
• UpdateRate: The UpdateRate property defines how often the item values are
inspected.

• RecordsToAcquire: The RecordsToAcquire property defines how many
records the OPC Toolbox must log before automatically stopping a logging
session. A logging task can also be stopped manually, using the stop
function.

• DeadbandPercent: The DeadbandPercent property does not control the
duration of a logging task directly, but has a significant influence over how
often a data change event is generated for analog items (an item whose value
is not confined to discrete values). By setting the DeadbandPercent property
to 0, you can ensure that a data change event occurs each time a value
changes. For more information on DeadbandPercent, consult the property
reference page.

You can use the UpdateRate and RecordsToAcquire properties to define the
minimum duration of a logging task. The duration of a logging task is at least

UpdateRate * RecordsToAcquire

For example, if the UpdateRate property is 10 (seconds) and the
RecordsToAcquire property is 360, then provided that a data change event is
generated each time the server queries the item values, the logging task will
take 3600 seconds, or one hour, to complete.

Controlling the Logged Data Destination
The OPC Toolbox allows you to log data to memory, to a disk file, or both
memory and a disk file. When logging data to memory, you can log only as
much data as will fit into available memory. Also, if you delete the dagroup
object that logged the data without extracting that data to the MATLAB
workspace, the data will be lost. The advantage of logging data to memory is
that logging to memory is faster than using a disk file.

Logging data to a disk file usually means that you can log more data, and the
data is not lost if you quit MATLAB or delete the dagroup object that logged the
data. However, reading data from a disk file is slower than reading data from
memory.

The LoggingMode property of a dagroup object controls where logged data is
stored. You can specify 'memory' (the default value), or 'disk', or
'disk&memory' as the value for LoggingMode.
0

Logging OPC Server Data
The following properties control how the OPC Toolbox logs data to disk. You
must set the LoggingMode property to 'disk' or 'disk&memory' for these
properties to take effect:

• LogFileName: The LogFileName property is a string that specifies the name
of the disk file that is used to store logged data. If the file does not exist, data
will be logged to that filename. If the file does exist, the LogToDiskMode
property defines how the OPC Toolbox behaves.

• LogToDiskMode: The LogToDiskMode property controls how the OPC Toolbox
handles disk logging when the file specified by LogFileName already exists.
Each time a logging task is started, if the LoggingMode is set to 'disk' or
'disk&memory', the OPC Toolbox checks to see if a file with the name
specified by the LogFileName property exists. If the file exists, the OPC
Toolbox will take the following action, based on the LogToDiskMode property:

- 'append': When LogToDiskMode is set to 'append', logged data will be
added to the existing data in the file.

- 'overwrite': When LogToDiskMode is set to 'overwrite', all existing
data in the file will be removed without warning, and new data will be
logged to the file.

- 'index': When LogToDiskMode is set to 'index', the OPC Toolbox
automatically changes the log filename, according to the following
algorithm:

The first log filename attempted is specified by the initial value of
LogFileName.

If the attempted filename exists, LogFileName is modified by adding a
numeric identifier. For example, if LogFileName is initially specified as
'groupRlog.olf', then groupRlog.olf is the first attempted filename,
groupRlog01.olf is the second filename, and so on. If LogFileName
already contains numeric characters, they are used to determine the next
sequence in the modifier. For example, if the LogFileName is initially
specified as 'groupRlog010.olf', and groupRlog010.olf exists, the next
attempted file is groupRlog011.olf, and so on.

The actual filename used is the first filename that does not exist. In this
way, each consecutive logging operation is written to a different file, and
no previous data is lost.
4-21

4 Reading, Writing, and Logging OPC Data

4-2
Configuring Logging Callbacks
You can configure the dagroup object so that MATLAB will automatically
execute a function when the logging task starts, when the logging task stops,
and each time a specified number of records is acquired during a logging task.
The dagroup object has three callback properties that are used during a logging
session. Each callback property defines the action to take when a particular
logging event occurs:

• Start event: A start event is generated when a logging task starts.

• Records acquired event: A records acquired event is generated each time a
logging task acquires a set number of records.

• Stop event: A stop event is generated when a logging task stops, either
automatically, or by the user calling the stop function.

For more information on configuring callbacks, see Chapter 6, “Using Events
and Callbacks.” For an example of using callbacks in a logging task, see
“Example: Viewing Recently Logged Data” on page 6-19.

Executing a Logging Task
Once you have configured your logging task you can execute the task.
Executing a logging task involves starting the logging task, monitoring the
task progress, and stopping the logging task.

Starting a Logging Task
You start a logging task by calling the start function, passing the dagroup
object that you want to start logging. The following example starts a logging
task for the dagroup object grp.

start(grp);

When you start a logging task, certain group and item properties become
read-only, as modifying these properties during a logging task would corrupt
the logging process. Also, the dagroup object performs the following operations:

1 Generates a start event and executes the StartFcn callback.

2 If Subscription is 'off', sets Subscription to 'on' and issues a warning.

3 Removes all records associated with the object from the OPC Toolbox engine.
2

Logging OPC Server Data
4 Sets RecordsAcquired and RecordsAvailable to 0.

5 Sets the Logging property to 'on'.

For more information on callbacks and events, see Chapter 6, “Using Events
and Callbacks.”

Monitoring the Progress of a Logging Task
During a logging task, you can monitor the progress of the task by examining
the following properties of the dagroup object:

• Logging: The Logging property is set to 'on' at the start of a logging task,
and set to 'off' when the logging task stops.

• RecordsAcquired: The RecordsAcquired property contains the number of
records that have been logged to the destination specified by the
LoggingMode property. When a start function is called, RecordsAcquired is
set to 0. When RecordsAcquired reaches RecordsToAcquire, the logging
task stops automatically.

• RecordsAvailable: The RecordsAvailable property contains the number of
records that have been stored in the OPC Toolbox engine for this logging
task. Data is only logged to memory if the LoggingMode is set to 'memory' or
'disk&memory'. You extract data from the OPC Toolbox engine using the
getdata function. See “Getting Logged Data into MATLAB” on page 4-24 for
more information on using getdata.

You can monitor these properties in the summary display of a dagroup object,
by typing the name of the dagroup object at the command line.

grp

grp =
Summary of OPC Data Access Group Object: group1
 Object Parameters
 Group Type : private
 Item : 1-by-1 daitem object
 Parent : localhost/Matrikon.OPC.SImulation.1
 Update Rate : 0.5
 Deadband : 0%
 Object Status
 Active : on
4-23

4 Reading, Writing, and Logging OPC Data

4-2
 Subscription : on
 Logging : on
 Logging Parameters
 Records : 120
 Duration : at least 60 seconds
 Logging to : disk
 Log File : group1log.olf ('index' mode)
 Status : 5 records acquired since starting.
 0 records available for GETDATA/PEEKDATA

Stopping a Logging Task
A logging task stops when one of the following conditions is met:

• The number of records logged reaches the value defined by the
RecordsToAcquire property.

• You manually stop the logging task by using the stop function.

The following example manually stops the logging task for dagroup object grp.

stop(grp);

When a logging task stops, the Logging property is set to 'off', a stop event is
generated, and the StopFcn callback is executed. For more information on
callbacks and events, see Chapter 6, “Using Events and Callbacks.”

Getting Logged Data into MATLAB
The OPC Toolbox does not log data directly to the MATLAB workspace. When
logging to memory, the data is buffered in the OPC Toolbox engine in a
storage-efficient way. When logging to disk, the data is logged in ASCII format.
To analyze your data, you need to extract the data from the OPC Toolbox
engine or from a disk file into MATLAB for processing. This section describes
how to get your logged data into the MATLAB workspace. The following
sections describe this process:

• “Retrieving Data from Memory” on page 4-25, discusses how to retrieve data
from the OPC Toolbox engine into MATLAB.

• “Retrieving Data from Disk” on page 4-26, discusses how to retrieve data
from a disk file into MATLAB.
4

Logging OPC Server Data
Whether you log data to memory or to disk, you can retrieve that logged data
in one of two formats:

• Structure format: This format stores each data change event in a structure.
Data from a logging task is simply an array of such structures.

• Array format: To visualize and analyze your data, you will need to work with
the time series of each of the items in the group. The array format is the
logged structure data, “unpacked” into separate arrays for the Value,
Quality, and TimeStamp.

These formats are discussed in more detail in Chapter 5, “Working with OPC
Toolbox Data.”

Retrieving Data from Memory
You retrieve data from memory using the getdata function, passing the
dagroup object as the first argument, and the number of records you want to
retrieve as the second argument. The data is returned as a structure containing
data from each data change event in the logging task. For example, to retrieve
20 records for the dagroup object grp:

s = getdata(grp, 20);

If you do not supply a second argument, getdata will try to retrieve the number
of records specified by the RecordsToAcquire property of the dagroup object. If
the OPC Toolbox engine contains fewer records for the group than the number
requested, a warning is generated and all of the available records will be
retrieved.

To retrieve data in array format, you must indicate the data type of the
returned values. You pass a string defining that data type as an additional
argument to the getdata function. Valid data types are any MATLAB numeric
data type (for example, 'double' or 'uint32') plus 'cell' to denote the
MATLAB cell array data type.

When you specify a numeric data type or cell array as the data type for
getdata, the logged data is returned in separate arrays for the item IDs logged,
the value, quality, time stamp, and the local event time of each data change
event logged. You must therefore specify up to five output arguments for the
getdata function when retrieving data in array format.

For example, to retrieve 20 records of logged data in double array format from
dagroup object grp.
4-25

4 Reading, Writing, and Logging OPC Data

4-2
[itmID, val, qual, tStamp, evtTime] = getdata(grp, 20, 'double');

Once you have retrieved data to the MATLAB workspace using getdata, the
records are removed from the OPC Toolbox engine to free up memory for
additional logged records. If you specify a smaller number of records than those
available in memory, getdata will retrieve the oldest records. You can use the
RecordsAvailable property of the dagroup object to determine how many
records the OPC Toolbox engine has stored for that group.

During a logging task, you can examine the most recently acquired records
using the peekdata function, passing the dagroup object as the first argument,
and the number of records to retrieve as the second argument. Data is returned
in a structure. You cannot return data into separate arrays using peekdata.
You can convert the structure returned by peekdata into separate arrays using
the opcstruct2array function. Data retrieved using peekdata is not removed
from the OPC Toolbox engine.

For an example of using getdata and peekdata during a logging task, see
“Example: An Overview of a Logging Task” on page 4-17.

When you delete a dagroup object, the data stored in the OPC Toolbox engine
for that object is also deleted.

Retrieving Data from Disk
You can retrieve data from a disk file into the MATLAB workspace using the
opcread function. You pass the name of the file containing the logged OPC data
as the first argument. The data stored in the log file is returned as a structure
array, in the same format as the structure returned by getdata. Records
retrieved from a log file into the MATLAB workspace are not removed from the
log file.

You can specify a number of additional arguments to the opcread function, that
control the records that are retrieved from the file. The additional arguments
must be specified by an option name and the option value. The following
options are available.
6

Logging OPC Server Data
The following example retrieves the data logged during the example on page
page 4-17, first into a structure array, and then records 3 to 6 are retrieved into
separate arrays for Value, Quality, and TimeStamp.

sDisk = opcread('LoggingExample.olf')

sDisk =
40x1 struct array with fields:
 LocalEventTime
 Items

[i,v,q,t,e] = opcread('LoggingExample.olf', ...
'records',[3,6], 'datatype','double')

i =
 'Random.Real8' 'Random.UInt2' 'Random.Real4'
v =
 1.0e+004 *

Option Name Option Value Description

'items' Specify a cell array of item IDs that you want returned.
Items not in this list will not be read.

'dates' Specify a date range for the event times. The range must
be [startDt endDt] where startDt and endDt are
MATLAB date numbers.

'records' Specify the index of records to retrieve as [startRec
endRec]. Records outside these indices will not be read.

'datatype' Specify the data type, as a string, that should be used for
the returned values. Valid data type strings are the same
as for getdata. If you specify a numeric data type or
'cell', the output will be returned in separate arrays. If
you specify a numeric array data type such as 'double'
or 'uint32', and the logged data contains arrays or
strings, an error will be generated and no data will be
returned.
4-27

4 Reading, Writing, and Logging OPC Data

4-2
 0.7819 3.0712 1.4771
 1.5599 2.7792 2.2051
 1.4682 0.4055 0.5315
 0.0235 2.4473 1.5456
q =
 'Good: Non-specific' 'Good: Non-specific' 'Good: Non-specific'
 'Good: Non-specific' 'Good: Non-specific' 'Good: Non-specific'
 'Good: Non-specific' 'Good: Non-specific' 'Good: Non-specific'
 'Good: Non-specific' 'Good: Non-specific' 'Good: Non-specific'
t =
 1.0e+005 *
 7.3202 7.3202 7.3202
 7.3202 7.3202 7.3202
 7.3202 7.3202 7.3202
 7.3202 7.3202 7.3202
e =
 1.0e+005 *
 7.3202
 7.3202
 7.3202
 7.3202

Note For a record to be returned by opcread, it must satisfy all the options
passed to opcread.
8

5

Working with OPC
Toolbox Data

When an OPC server returns data from a read or logging operation, three pieces of information make
up the data. The Value, Quality, and Timestamp all contribute information about the data point that
is returned. As a result, you need to understand how to deal with this information together, because
one aspect of the data in isolation will not provide a complete picture of the data returned by a read
operation, data change event, read async event, or OPC Toolbox logging task.

This chapter describes how the OPC Toolbox handles data returned by an OPC server.

Understanding OPC Data: Value,
Quality, and TimeStamp (p. 5-2)

Describes the Value, Quality, and TimeStamp elements
that make up OPC data.

Working with Structure Formatted
Data (p. 5-7)

Describes how the OPC Toolbox arranges data in
structure formats.

Understanding Array Formatted Data
(p. 5-13)

Describes how you can use array formats returned by the
OPC Toolbox.

Working with Different Data Types
(p. 5-16)

Describes how the OPC Toolbox deals with MATLAB data
types and OPC server data types.

5 Working with OPC Toolbox Data

5-2
Understanding OPC Data: Value, Quality, and TimeStamp
OPC servers provide access to many server items. To reduce network traffic
between the server and the “device” associated with each server item (a field
instrument, or a memory location in a PLC, SCADA, or DCS system) the OPC
server stores information about each server item in the server’s “cache,”
updating that information only as frequently as required to satisfy the requests
of all clients connected to that server. Because this process results in data in
the cache that may not reflect the actual value of the device, the OPC server
provides the client with additional information about that value.

This section describes the OPC Value, Quality, and TimeStamp properties, and
how they should be used together to assess the information provided by an OPC
server:

• “The Relationship Between Value, Quality, and TimeStamp” on page 5-2
describes the Value, Quality, Timestamp properties in more detail.

• “How Value, Quality, and TimeStamp Are Obtained” on page 5-3 describes
how the OPC Toolbox provides you with Value, Quality, and TimeStamp
properties when you use the synchronous read, asynchronous read and
refresh (data change) events, and when you retrieve logged data.

The Relationship Between Value, Quality, and
TimeStamp
Every server item on an OPC server has three properties that describe the
status of the device or memory location associated with that server item:

• Value — The Value of the server item is the last value that the OPC server
stored for that particular item. The value in the cache is updated whenever
the server reads from the device. The server reads values from the device at
the update rate specified by the dagroup object’s UpdateRate property, and
only when the item and group are both active. You control the active status
of an item or group using that object’s Active property.

In addition, for analog type data (data with the additional OPC Foundation
Recommended Properties 'High EU' and 'Low EU') the percentage change
between the cached value and the device value must exceed the
DeadBandPercent property specified for that item in order for the cached
value to be updated.

Understanding OPC Data: Value, Quality, and TimeStamp
• Quality — The Quality of the server item is a string that represents
information about how well the cache value matches the device value. The
Quality is made up of two parts: a major quality, which can be 'Good',
'Bad', or 'Uncertain', and a minor quality, which describes the reason for
the major quality. For more information on the Quality string, see Appendix
A, “OPC Quality Strings.”

The Quality of the server item can change without the Value changing. For
instance, if the OPC server attempts to obtain a Value from the device but
that operation fails, the Quality will be set to 'Bad'. Also, when you change
the client’s Active property, the Quality will change.

You must always examine the Quality of an item before using the Value
property of that item.

• TimeStamp — The TimeStamp of a server item represents the most recent
time that the server assessed that the device set the Value and Quality
properties of that server item. The TimeStamp can change without the Value
changing. For example, if the OPC server obtains a value from the device
that is the same as the current Value, the TimeStamp property will still be
updated, even if the Value property is not.

The OPC Toolbox provides access to the Value, Quality, and TimeStamp
properties of a server item through properties of the daitem object associated
with that server item.

How Value, Quality, and TimeStamp Are Obtained
The OPC Toolbox provides all three OPC Data Access Standard mechanisms
for reading data from an OPC server. These three mechanisms are used in
various ways by the OPC Toolbox to return data from those functions, to
provide event information, to update properties of OPC Toolbox objects, and to
log data to memory and disk.

The way the OPC Toolbox uses the three OPC Data Access mechanisms is
described in the following sections:

• “OPC Data Returned from Synchronous Read Operations” on page 5-4
describes the synchronous read mechanism used by the read function.

• “OPC Data Returned in Asynchronous Read Operations” on page 5-4
describes the asynchronous read mechanism used by the readasync
function.
5-3

5 Working with OPC Toolbox Data

5-4
• “OPC Data Returned from a Data Change Event” on page 5-5 describes the
data change event notification mechanism used with subscribed, active
groups, with the refresh function, and by the OPC Toolbox logging process.

OPC Data Returned from Synchronous Read Operations
You initiate a synchronous read operation by using the read function. When
you read from a dagroup object, all items in that group are read in one
instruction.

You can specify the source of a synchronous read operation as 'cache' or
'device'. If you read from the cache, the server simply returns the value in the
cache. If you read from the device, the server will get the value from the device
and update the cache before sending the Value, Quality, and TimeStamp
information back as part of the read operation.

The OPC Toolbox returns the data in the output structure from the read
operation. Each element of the structure array contains information about one
of the items read.

Whenever you read values using the read function, the OPC Toolbox will
update the daitem object’s Value, Quality, and TimeStamp properties with the
values read from the server.

OPC Data Returned in Asynchronous Read Operations
You initiate an asynchronous read operation by using the readasync function.
When you read from a dagroup object, all items in that group are read in one
instruction.

Asynchronous read operations always use the device as the source of the read.
Whenever you send an asynchronous read request, the server will read values
from the devices connected to the items. The server will then update that
server item’s Value, Quality, and TimeStamp in the cache before sending an
asynchronous read event back to the OPC Toolbox.

The OPC Toolbox returns information from an asynchronous read operation
via the read async event structure. This event structure is stored in the opcda
client object’s event log, which you can access using the EventLog property of
the client. The event structure is also passed to the callback function defined
in the ReadAsyncFcn property of the dagroup object that initiated the
asynchronous read operation. For more information on the format of the event
structures, see “Event Structures” on page 6-9.

Understanding OPC Data: Value, Quality, and TimeStamp
When an asynchronous read operation succeeds, in addition to returning data
via the event structures, the OPC Toolbox also updates the Value, Quality, and
TimeStamp properties of the associated daitem object.

OPC Data Returned from a Data Change Event
The third mechanism for getting data from an OPC server involves the data
change event. The OPC server generates a data change event for a group at the
period specified by the UpdateRate property when the Value or Quality of an
item in the group changes. You do not have to specifically request a data
change event, because the OPC server will automatically generate a data
change event. However, you can force a data change event at any time using
the refresh function.

An OPC server will generate a data change event only for an active, subscribed
group containing active items. You control the active status of dagroup objects
and daitem objects by setting their Active property. You control the subscribed
status of a dagroup object by setting the Subscription property of the dagroup
object.

The following points describe how an OPC server generates a data change
event:

• When you configure a group, you define the rate at which the server must
scan items in that group. This rate is controlled by the UpdateRate property
for a dagroup object. The server updates the Value, Quality, and TimeStamp
values in the cache for the items in that group at the required update rate.
Note that if a device cannot provide a value in that time, the server may
reduce the rate at which it updates the value in the server cache for that
item.

• If you set an item’s Active property to 'off', the server will stop scanning
that item. You must set the Active property to 'on' for the server to scan
the item again.

• If you set the Active property of a dagroup object to 'off', the server will
stop scanning all items in that group. You can still perform asynchronous
read operations, and synchronous read operations from the 'device', but no
operations involving the server cache can be performed. You must set the
Active property to 'on' to enable operations involving the server cache.

• If the Subscription property for a dagroup object is set to 'on', then every
time the server updates cache values for the items in that group, the server
5-5

5 Working with OPC Toolbox Data

5-6
will send a data change event for that group, to the client object. The data
change event contains information about every item whose Value, Quality,
or TimeStamp updated.

• If you set the Subscription property to 'off', then the OPC server will not
generate data change events. However, as long as the group is still active, the
OPC server will continue to scan all active items for that group, at the rate
specified by the UpdateRate property.

When the OPC server generates a data change event, the OPC Toolbox
performs the following tasks:

1 The daitem object Value, Quality, and TimeStamp properties are updated for
each item that is included in the data change event.

2 The callback function defined by the DataChangeFcn property of the dagroup
object is called. For more information on callbacks, see “Creating and
Executing Callback Functions” on page 6-15.

3 If the group is logging data, the data change event is stored in memory
and/or on disk. For more information on logging, see “Logging OPC Server
Data” on page 4-16.

4 If the group is logging, and the number of records acquired is a multiple of
the RecordsAcquiredFcnCount property of the dagroup object, then the
callback function defined by the RecordsAcquiredFcn property of the
dagroup object is called. For more information on callbacks, see “Creating
and Executing Callback Functions” on page 6-15.

For more information on the structure of a data change event, see “Data Fields
for Cancel Async, Data Change, Error, Read Async, and Write Async Events”
on page 6-10.

Working with Structure Formatted Data
Working with Structure Formatted Data
The OPC Toolbox uses structures to return data from an OPC server, for the
following operations:

• Synchronous read operations, executed using the read function.

• Asynchronous read operations, executed using the readasync function.

• Data change events generated by the OPC server for all active, subscribed
groups or through a refresh function call.

• Retrieving logged data in structure format from memory using the getdata
or peekdata functions.

In all cases, the structure of the returned data is the same. This section
describes that structure, and how you can use the structure data to understand
OPC operations.

Example: Performing a Read Operation on Multiple
Items
To demonstrate how to use structure formatted data, the following example
reads values from three items on the Matrikon OPC Simulation Server.

Step 1: Create OPC Toolbox group objects. This example creates a hierarchy of OPC
Toolbox objects for the Matrikon Simulation Server. To run this example on
your system, you must have the Matrikon Simulation Server installed.
Alternatively, you can replace the values used in the creation of the objects
with values for a server you can access.

da = opcda('localhost','Matrikon.OPC.Simulation.1');
connect(da);
grp = addgroup(da,'StructExample');
itm1 = additem(grp,'Random.Real8');
itm2 = additem(grp,'Saw-toothed Waves.UInt2');
itm3 = additem(grp,'Random.Boolean');

Step 2: Read data. This example reads values first from the device and then from
the server cache. The data is returned in structure format.

r1 = read(grp, 'device');
r2 = read(grp);
5-7

5 Working with OPC Toolbox Data

5-8
Step 3: Interpret the data. The data is returned in structure format. To interpret
the data, you must extract the relevant information from the structures. In this
example, you compare the Value, Quality, and TimeStamp to confirm that they
are the same for both read operations.

disp({r1.ItemID;r1.Value;r2.Value})
disp({r1.ItemID;r1.Quality;r2.Quality})
disp({r1.ItemID;r1.TimeStamp;r2.TimeStamp})

Step 4: Read more data. By reading first from the cache and then from the device,
you can compare the returned data to see if any change has occurred. In this
case, the data will not be the same.

r3 = read(grp);
r4 = read(grp, `device');
disp({r3.ItemID;r3.Value;r4.Value})

Step 5: Clean up. Always remove OPC Toolbox objects from memory, and the
variables that reference them, when you no longer need them.

disconnect(da)
delete(da)
clear da grp itm1 itm2 itm3

Interpreting Structure Formatted Data
All data returned by the read, opcread, and getdata functions, and included
in the data change and read async event structures passed to callback
functions, has the same underlying format. The format is best explained by
starting with the output from the read function, which provides the basic
building block of structure formatted data.

Structure Formatted Data for a Single Item
When you execute the read function with a single daitem object, the following
structure is returned.

rSingle = read(itm1)

rSingle =

 ItemID: 'Random.Real8'
 Value: 1.0440e+004

Working with Structure Formatted Data
 Quality: 'Good: Non-specific'
 TimeStamp: [2004 3 10 14 46 9.5310]
 Error: ''

All structure formatted data for an item will contain the ItemID, Value,
Quality, and TimeStamp fields.

Note The Error field in this example is specific to the read function, and is
used to indicate any error message the server generated for that item.

Structure Formatted Data for Multiple Items
If you execute the read function with a group object containing more than one
item, a structure array is returned.

rGroup = read(grp)

rGroup =

3x1 struct array with fields:
 ItemID
 Value
 Quality
 TimeStamp
 Error

In this case, the structure array contains one element for each item that was
read. The ItemID field in each element identifies the item associated with that
element of the structure array.

Note When you perform asynchronous read operations, and for data change
events, the order of the items in the structure array is determined by the OPC
server. The order may not be the same as the order of the items passed to the
read function.
5-9

5 Working with OPC Toolbox Data

5-1
Structure Formatted Data for Events
Event structures contain information specifically about the event, as well as
the data associated with that event.

The following example displays the contents of a read async event.

cleareventlog(da);
tid = readasync(itm);
% Wait for the read async event to occur
pause(1);
event = get(da, 'EventLog')

event =

 Type: 'ReadAsync'
 Data: [1x1 struct]

The Data field of the event structure contains

event.Data

ans =

 LocalEventTime: [2004 3 11 10 59 57.6710]
 TransID: 4
 GroupName: 'StructExample'
 Items: [1x1 struct]

The Items field of the Data structure contains

event.Data.Items

ans =

 ItemID: 'Random.Real8'
 Value: 9.7471e+003
 Quality: 'Good: Non-specific'
 TimeStamp: [2004 3 11 10 59 57.6710]

From the example, you can see that the event structure embeds the structure
formatted data in the Items field of the Data structure associated with the
event. Additional fields of the Data structure provide information on the event,
0

Working with Structure Formatted Data
such as the source of the event, the time the event was received by the OPC
Toolbox, and the transaction ID of that event.

Structure Formatted Data for a Logging Task
The OPC Toolbox logs data to memory and/or disk using the data change event.
When you return structure formatted data for a logging task using the opcread
or getdata function, the returned structure array contains the data change
event information arranged in a structure array. Each element of the structure
array contains a record, or data change event. The structure array has the
LocalEventTime and Items fields from the data change event. The Items field
is in turn a structure array containing the fields ItemID, Value, Quality, and
TimeStamp.

When to Use Structure Formatted Data
For the read, read async and data change events, you must use structure
formatted data. However, for a logging task, you have the option of retrieving
the data in structure format, or numeric or cell array format.

For a logging task, you should use structure formatted data when you are
interested in

• The “raw” event information returned by the OPC server. The raw
information may help in diagnosing the OPC server configuration or the
client configuration. For example, if you see a data value that does not
change frequently, yet you know that the device should be changing
frequently, you can examine the structure formatted data to determine when
the OPC server notifies clients of a change in Value, Quality and/or
TimeStamp.

• Timing information rather than time series data. If you need to track when
an operator changed the state of a switch, structure formatted data provides
you with event-based data rather than time series data.

For other tasks that involve time series data, such as visualization of the data,
analysis, modeling, and optimization operations, you should consider using the
cell or numeric array output format for getdata and opcread. For more
information on array formats, see “Understanding Array Formatted Data” on
page 5-13.
5-11

5 Working with OPC Toolbox Data

5-1
Converting Structure Formatted Data to Array
Format
If you retrieve data from memory or disk in structure format, you can convert
the resulting structure into array format using the opcstruct2array function.
You pass the structure array to the function, and it will return the ItemID,
Value, Quality, TimeStamp, and EventTime information contained in that
structure array.

The opcstruct2array function is particularly useful when you want to
visualize or analyze time series data without removing it from memory.
Because peekdata only returns structure arrays (due to speed considerations),
you can use opcstruct2array to convert the contents of the structure data into
separate arrays for visualization and analysis purposes.

Note You should always retrieve data in numeric or cell array format
whenever you only want to manipulate the time series data. Although the
opcstruct2array function has been designed to use as little memory as
possible, conversion in MATLAB still requires storage space for both the
structure array and the resulting arrays.

For an example of using opcstruct2array, see “Example: Writing a Callback
Function” on page 6-16.
2

Understanding Array Formatted Data
Understanding Array Formatted Data
The OPC Toolbox is able to return arrays of Value, Quality, and TimeStamp
information from a logging task. You can retrieve arrays from memory using
getdata, or from disk using opcread, by specifying the data type as 'cell' or
any MATLAB numeric array data type, such as 'double' or 'uint32'. Consult
the function reference pages for details on how to specify the data type.

When you request array formatted data, the OPC Toolbox will return arrays of
each of the following elements of the records in memory or on disk:

• ItemID — A 1-by-nItems list of all item IDs occurring in the structure array.
Each record is searched and all unique item IDs are returned in a cell array.
The order of the item IDs must be used to interpret any of the Value, Quality,
or TimeStamp arrays.

• Value — An nRecs-by-nItems array of values for each item ID defined in the
ItemID variable, at each time stamp defined by the TimeStamp array. Each
column of the Value array represents the history of values for the
corresponding item in the ItemID array. Each row corresponds to one record.
See “Treatment of Missing Data” on page 5-14 for information on how the
Value array is populated.

• Quality — An nRecs-by-nItems cell array of quality strings. Each column
represents the history of qualities for the corresponding item in the ItemID
array. Each row corresponds to the qualities for a particular record. If a
particular item ID was not part of a record (because the item did not change
during that period), the corresponding column in that row is set to 'Repeat'.

• TimeStamp — An nRecs-by-nItems array of time stamps for each value in the
Value field. The time stamps are in MATLAB date number format. For more
information on MATLAB date numbers, see the datenum function help.

• EventTime — An nRecs-by-1 array of times that the record was received by
the OPC Toolbox (the LocalEventTime field of the record in structure
format). The times are in MATLAB date number format. For more
information on MATLAB date numbers, see the datenum function help.
5-13

5 Working with OPC Toolbox Data

5-1
Conversion of Logged Data to Arrays
When you request array formatted data from getdata or opcread, you must
define the desired data type for the returned Value array. The OPC Toolbox
automatically converts each record of logged data from the item’s data type
(defined by the DataType property of that item) to the requested data type.

When converting logged data to arrays, the OPC Toolbox must consider two
factors when populating the returned arrays:

• A record may not contain information for every item in the logging task.
“Treatment of Missing Data” on page 5-14 discusses how the OPC Toolbox
deals with missing data.

• A record may contain an array value for a single item. Such values cannot
easily be converted to a single value of numeric data types. “Treatment of
Array Data Values” on page 5-15 discusses how the OPC Toolbox deals with
this issue.

Treatment of Missing Data
When the OPC Toolbox logs data, each logged record may not contain all items
in the logging task. When converting the data to array format, every item
involved in the logging task must be allocated a value, a quality, and a time
stamp for each record. Therefore, in a logging task there may be “missing” data
for a particular item in a particular record. The OPC Toolbox uses the following
rules to determine how to fill the missing entry in each array:

• Value — When you request the 'cell' array data type, the value used for
the missing entry is an empty double array ([]). When requesting a numeric
data type, the value used for the missing entry is the last value for that item.
If no previous value is known, the equivalent NaN (not a number) entry is
used. For example, if the very first record does not contain an entry for that
item, NaN is used to fill in the missing entry in the first row of the Value
array. The equivalent NaN value for integer and logical data types is 0.

• Quality — The missing entry is filled with the OPC Toolbox specific quality
string 'Repeat'.

• TimeStamp — The time stamp used for the missing entry is the first time
stamp found in that particular record (row).
4

Understanding Array Formatted Data
Treatment of Array Data Values
For each record stored in memory or on disk during a logging task, a single item
may return an array of values. When converting logged data to array format,
each item in each record has only one entry in the Value array allocated to that
record and item.

For the 'cell' data type, the OPC Toolbox is able to store the array returned
as the Value for that element, because a MATLAB cell array is able to store any
data type of any size in each element of the cell array.

For numeric data types, such as 'double' or 'uint32', the resulting Value
array provides space for only a single value. Consequently, if an array value is
found in a logging task, and you have requested a numeric array data type, an
error will be generated. You must use the 'cell' data type or the structure
format to return logged data that contains arrays as values.
5-15

5 Working with OPC Toolbox Data

5-1
Working with Different Data Types
The OPC Data Access Standard uses the Microsoft COM Specification for
communication between the OPC server and OPC client. A significant amount
of the data exchanged between the OPC server and the client is the value from
a server item or the value that a client wants to write to a server item. The
Microsoft COM Specification uses Microsoft Variants to send different data
types between the client and server. This section discusses how the OPC
Toolbox converts MATLAB data types to COM Variants when writing values,
and COM Variants to MATLAB data types when reading values.

• “Conversion Between MATLAB Data Types and COM Variant Data Types”
on page 5-16 describes how the OPC Toolbox converts data between
MATLAB data types and COM Variants.

• “Conversion of Values Written to an OPC Server” on page 5-17 describes how
data conversion takes place for write operations.

• “Conversion of Values Read from an OPC Server” on page 5-18 describes how
data conversion takes place for read operations.

• “Handling Arrays for Item Values” on page 5-18 discusses how the OPC
Toolbox handles array data.

Conversion Between MATLAB Data Types and COM
Variant Data Types
OPC servers require all values to be written to server items in COM Variant
format. The server also provides the OPC Toolbox with COM Variants when an
item’s Value property is read or returned by the server. The OPC Toolbox
automatically converts between the COM Variant type and MATLAB data
types according to the table shown below.

Table 5-1: Conversion from MATLAB Data Type to COM Variant Data Type

MATLAB Data Type OPC Server Data Type
(COM Variant Type)

Remarks

double VT_R8

single VT_R4

char VT_BSTR
6

Working with Different Data Types
Conversion of Values Written to an OPC Server
When you write values to the OPC server using the write or writeasync
function, you can provide any MATLAB data for the write operation. When you
write data to an OPC server, the following data conversions take place:

1 The OPC Toolbox converts the value into the equivalent COM Variant
according to Table 5-1. If any disallowed data type is encountered (for

logical VT_BOOL

uint8 VT_UI1

uint16 VT_UI2

uint32 VT_UI4

uint64 VT_UI8

int8 VT_I1

int16 VT_I2

int32 VT_I4

int64 VT_I8

function_handle N/A Not allowed

cell N/A Not allowed

struct N/A Not allowed

object N/A Not allowed

N/A VT_DISPATCH Not allowed

N/A VT_BYREF Not allowed

double VT_EMPTY Returns the empty
matrix ([])

Table 5-1: Conversion from MATLAB Data Type to COM Variant Data Type

MATLAB Data Type OPC Server Data Type
(COM Variant Type)

Remarks
5-17

5 Working with OPC Toolbox Data

5-1
example, if you attempt to write a MATLAB structure), an error will be
generated.

2 The COM Variant is sent to the OPC server.

3 The OPC server will attempt to convert the COM Variant to the server
item’s canonical data type, using COM Variant conversion rules. If the
conversion fails, the server will return an error.

Conversion of Values Read from an OPC Server
When an OPC server returns values for a server item to MATLAB, the OPC
server will first convert the value to the COM Variant equivalent of the data
type specified by the daitem object’s DataType property. If the conversion fails,
an error message is returned with the value. When the OPC Toolbox receives
the value, the COM Variant is converted to the equivalent MATLAB data type
according to Table 5-1.

Handling Arrays for Item Values
The OPC Specification supports arrays of values being written to a server item,
and read from a server item. However, a specific server item may not accept an
array of values. The behavior of the server in that case is server-dependent. For
example, one server may use only the first value of the array. Another server
may return an error when attempting to write an array of values to a server
item that only supports a scalar value. The OPC Toolbox is not able to
determine if a server item accepts only scalar values.

For all of the data types listed in Table 5-1 that can be converted between
MATLAB and a COM Variant, scalar and array data is permitted by the OPC
Toolbox. However, the OPC Specification supports only one-dimensional
arrays of data. Higher dimension MATLAB arrays are flattened into a
one-dimensional vector when writing data to the OPC server.
8

6

Using Events and
Callbacks

You can enhance the power and flexibility of your OPC application by using event callbacks. An event
is a specific occurrence that can happen while an OPC Data Access client object (opcda client object)
is connected to an OPC server. The toolbox defines a set of events that include starting, stopping, or
acquiring records during a logging task, as well as events for asynchronous reads and writes, data
changes, and server shutdown notification.

When a particular event occurs, the toolbox can execute a function that you specify. This is called a
callback. Certain events can result in one or more callbacks. You can use callbacks to perform
processing tasks while your client object is connected. For example, you can display a message,
analyze data, or perform other tasks. Callbacks are controlled through OPC Toolbox object
properties. Each event type has an associated property. You specify the function that you want
executed as the value of that property.

Example: Using the Default
Callback Function (p. 6-2)

Introduces events and callbacks by showing a simple example.

Event Types (p. 6-4) Defines all the event types supported by the toolbox.

Retrieving Event Information
(p. 6-9)

Describes the information generated with each event and
describes how to access it.

Creating and Executing Callback
Functions (p. 6-15)

Describes how to write a callback function and associate it
with an event callback.

6 Using Events and Callbacks

6-2
Example: Using the Default Callback Function
To illustrate how to use callbacks, this section presents a simple example that
creates an OPC Toolbox object hierarchy and associates a callback function
with the start event, records acquired event, and stop event of the OPC Data
Access Group object (dagroup object). For information about all the event
callbacks supported by the toolbox, see “Event Types” on page 6-4.

The example uses the default callback function provided with the toolbox,
opccallback. The default callback function displays the name of the object
along with information about the type of event that occurred and when it
occurred. To learn how to create your own callback functions, see “Creating and
Executing Callback Functions” on page 6-15.

Step 1: Create OPC Toolbox group objects. This example creates a hierarchy of OPC
Toolbox objects for the Matrikon Simulation Server. To run this example on
your system, you must have the Matrikon Simulation Server installed.
Alternatively, you can replace the values used in the creation of the objects
with values for a server you can access.

da = opcda('localhost','Matrikon.OPC.Simulation.1');
connect(da);
grp = addgroup(da,'CallbackTest');
itm = additem(grp,{'Random.Real8','Saw-toothed Waves.UInt2'});

Step 2: Configure the logging task properties. For this example, we log 20 records at
0.5-second intervals.

set(grp,'RecordsToAcquire',20);
set(grp,'UpdateRate',0.5);

Step 3: Configure the callback properties. Set the values of three callback properties.
The example uses the default callback function opccallback.

set(grp,'StartFcn',@opccallback)
set(grp,'StopFcn',@opccallback)
set(grp,'RecordsAcquiredFcn',@opccallback)

For this example, specify how often to generate a records acquired event.

set(grp,'RecordsAcquiredFcnCount',5);

Example: Using the Default Callback Function
Step 4: Start the logging task . Start the dagroup object. The object logs 20 records
at 0.5-second intervals, and then stops. With the three callback functions
enabled, the object outputs information about each event as it occurs. The
records acquired event occurs four times for this example.

start(grp)
OPC Start event occurred at local time 18:52:38

Group 'CallbackTest': 0 records acquired.
OPC RecordsAcquired event occurred at local time 18:52:41

Group 'CallbackTest': 5 records acquired.
OPC RecordsAcquired event occurred at local time 18:52:44

Group 'CallbackTest': 10 records acquired.
OPC RecordsAcquired event occurred at local time 18:52:47

Group 'CallbackTest': 15 records acquired.
OPC RecordsAcquired event occurred at local time 18:52:49

Group 'CallbackTest': 20 records acquired.
OPC Stop event occurred at local time 18:52:49

Group 'CallbackTest': 20 records acquired.

Step 5: Clean up. Always remove OPC Toolbox objects from memory, and the
variables that reference them, when you no longer need them.

disconnect(da)
delete(da)
clear da grp itm
6-3

6 Using Events and Callbacks

6-4
Event Types
The OPC Toolbox supports several different types of events. Each event type
has an associated OPC Toolbox object property that you can use to specify the
function that executes when the event occurs.

The following table lists the supported event types, the name of the object
property associated with the event, and a brief description of the event,
including the object class associated with the event. For detailed information
about these callback properties, see the reference information for the property.

The toolbox generates a specific set of information for each event and stores it
in an event structure. To learn more about the contents of these event
structures and how to retrieve this information, see “Retrieving Event
Information” on page 6-9.

Events and Callback Function Properties

Event Callback Property Description

Cancel
Async

CancelAsyncFcn The toolbox generates a cancel async event when an
asynchronous operation is cancelled. You cancel an
asynchronous operation using the cancelasync function.

When a cancel async event occurs, the toolbox executes
the function specified by the CancelAsyncFcn property. By
default, the toolbox executes the default callback function
for this event, opccallback, which displays information
about the cancel async event at the MATLAB command
line.

Cancel async events occur at the dagroup object level.

Event Types
Data
Change

DataChangeFcn The toolbox generates a data change event when the
server notifies the OPC Toolbox that data for a group has
changed. The server will only notify the OPC Toolbox of
data changes if the group’s Active property is set to 'on'
and the Subscription property is set to 'on'. For more
information on controlling data change events, see “Data
Change Events and Subscription” on page 4-11.

When a data change event occurs, the toolbox executes
the function specified by the DataChangeFcn property.

Data change events occur at the dagroup object level.

Error ErrorFcn The toolbox generates an error event when a run-time
error occurs, such as a data type conversion error or
time-out. Run-time errors do not include configuration
errors such as setting an invalid property value.

When an error event occurs, the toolbox executes the
function specified by the ErrorFcn property. By default,
the toolbox executes the default callback function for this
event, opccallback, which displays the error message at
the MATLAB command line.

Error events occur at the opcda client object level.

Events and Callback Function Properties (Continued)

Event Callback Property Description
6-5

6 Using Events and Callbacks

6-6
Read
Async

ReadAsyncFcn The toolbox generates a read async event when an
asynchronous read operation completes. You execute an
asynchronous read operation using the readasync
function.

When a read async event occurs, the toolbox executes the
function specified by the ReadAsyncFcn property. By
default, the toolbox executes the default callback function
for this event, opccallback, which displays information
about the read async event at the MATLAB command
line.

Read async events occur at the dagroup object level.

Records
Acquired

RecordsAcquiredFcn The toolbox generates a records acquired event every time
an integer multiple of a specified number of records have
been acquired. You use the RecordsAcquiredFcnCount
property to specify this number.

When a records acquired event occurs, the toolbox
executes the function specified by the
RecordsAcquiredFcn property.

Records acquired events occur at the dagroup object level.

Shutdown ShutdownFcn The toolbox generates a shutdown event when the OPC
server notifies the client that the server is about to shut
down.

When a shutdown event occurs, the toolbox executes the
function specified by the ShutdownFcn property, and the
client object is then disconnected from the server. By
default, the toolbox executes the default callback function
for this event, opccallback, which displays information
about the shutdown event at the MATLAB command line.

Shutdown events occur at the opcda client object level.

Events and Callback Function Properties (Continued)

Event Callback Property Description

Event Types
Start StartFcn The toolbox generates a start event when an object is
started. You use the start function to start an object.

Note: If an error occurs in the start callback function, the
object does not start.

When a start event occurs, the toolbox executes the
function specified by the StartFcn property.

Start events occur at the dagroup object level.

Stop StopFcn The toolbox generates a stop event when the object stops
running. An object stops running when the stop function
is called, or when the specified number of records is
acquired.

When a stop event occurs, the toolbox executes the
function specified by the StopFcn property.

Stop events occur at the dagroup object level.

Timer TimerFcn The toolbox generates a timer event when an integer
multiple of a specified amount of time expires. You use the
TimerPeriod property to specify the amount of time. Time
is measured relative to when the opcda client object is
connected.

Note: Some timer events might not execute if your
system is significantly slowed or if the TimerPeriod is set
too small.

When a timer event occurs, the toolbox executes the
function specified by the TimerFcn property.

Timer events occur at the opcda client object level.

Events and Callback Function Properties (Continued)

Event Callback Property Description
6-7

6 Using Events and Callbacks

6-8
Write
Async

WriteAsyncFcn The toolbox generates a write async event when an
asynchronous write operation completes. You execute an
asynchronous write operation using the writeasync
function.

When a write async event occurs, the toolbox executes the
function specified by the WriteAsyncFcn property. By
default, the toolbox executes the default callback function
for this event, opccallback, which displays information
about the write async event at the MATLAB command
line.

Write async events occur at the dagroup object level.

Events and Callback Function Properties (Continued)

Event Callback Property Description

Retrieving Event Information
Retrieving Event Information
Each event has a set of information associated with that event. The
information is generated by the OPC server or the OPC Toolbox, and stored in
an event structure. This information includes the event type, the time the
event occurred, and other event-specific information. For some events, the
toolbox records event information in the opcda client object’s EventLog
property. You can also access the event structure associated with an event in a
callback function.

This section

• Defines the information in an event structure for all event types

• Describes how to retrieve information from the EventLog property

For information about accessing event information in a callback function, see
“Creating and Executing Callback Functions” on page 6-15.

Event Structures
An event structure contains two fields: Type and Data. For example, this is an
event structure for a start event.

Type: 'Start'
Data: [1x1 struct]

The Type field is a text string that specifies the event type. For a start event,
this field contains the text string 'Start'.

The Data field is a structure that contains information about the event. The
composition of this structure varies, depending on which type of event
occurred. For details about the information associated with specific events, see
the following sections:

• “Data Fields for Cancel Async, Data Change, Error, Read Async, and Write
Async Events” on page 6-10

• “Data Fields for Start, Stop, and Records Acquired Events” on page 6-11

• “Data Fields for Shutdown Events” on page 6-11

• “Data Fields for Timer Events” on page 6-12
6-9

6 Using Events and Callbacks

6-1
Data Fields for Cancel Async, Data Change, Error, Read Async, and Write
Async Events
For cancel async, data change, error, read async, and write async events, the
Data structure contains these fields.

The Items structure array for read async events contains the following fields.

The Items structure array for write async events contains one field: ItemID.

Field Name Description

GroupName The name of the group associated with the event.

LocalEventTime Absolute time the event occurred, returned in
MATLAB date vector format

[year month day hour minute seconds]

TransID The transaction ID for the operation. In the case
of a cancel async event, TransID contains the
transaction ID that was cancelled.

Items A structure array containing information about
each item in the asynchronous operation. The
cancel async event structure does not contain this
field.

Field Name Description

ItemID The item ID for this record in the structure array.

Value The data value.

Quality The data quality as a string.

TimeStamp The time the OPC server updated the value and
quality. The time is returned in MATLAB date
vector format

[year month day hour minute seconds]
0

Retrieving Event Information
The Items structure array for error events contains the ItemID field and an
Error field, containing a string describing the error that occurred for that item.

Data Fields for Start, Stop, and Records Acquired Events
For start, stop, and records acquired events, the Data structure contains these
fields.

Data Fields for Shutdown Events
For shutdown events, the Data structure contains these fields.

Field Name Description

GroupName The name of the group associated with the event.

LocalEventTime Absolute time the event occurred, returned in
MATLAB date vector format

[year month day hour minute seconds]

RecordsAcquired The total number of records acquired in the
current logging session.

Field Name Description

LocalEventTime Absolute time the event occurred, returned in
MATLAB date vector format

[year month day hour minute seconds]

Reason A string containing the reason the OPC server
provided for shutting down.
6-11

6 Using Events and Callbacks

6-1
Data Fields for Timer Events
For timer events, the Data structure contains these fields.

Example: Accessing Data in the Event Log
While an opcda client object is connected, the toolbox stores event information
in the opcda client object’s EventLog property. The value of this property is an
array of event structures. Each structure represents one event. For detailed
information about the composition of an event structure for each type of event,
see “Event Structures” on page 6-9.

The toolbox adds event structures to the EventLog array in the order in which
the events occur. The first event structure reflects the first event recorded, the
second event structure reflects the second event recorded, and so on.

Note Data change events, records acquired events, and timer events are not
included in the EventLog. Event structures for these events (and all the other
events) are available to callback functions. For more information, see
“Creating and Executing Callback Functions” on page 6-15.

To illustrate the event log, this example creates an OPC Toolbox object
hierarchy, executes a logging task, and then examines the object’s EventLog
property:

Step 1: Create the OPC Toolbox hierarchy. This example creates a hierarchy of OPC
Toolbox objects for the Matrikon Simulation Server. To run this example on
your system, you must have the Matrikon Simulation Server installed.
Alternatively, you can replace the values used in the creation of the objects
with values for a server you can access.

da = opcda('localhost','Matrikon.OPC.Simulation.1');
connect(da);

Field Name Description

LocalEventTime Absolute time the event occurred, returned in
MATLAB date vector format

[year month day hour minute seconds]
2

Retrieving Event Information
grp = addgroup(da,'CallbackTest');
itm1 = additem(grp,'Triangle Waves.Real8');

Step 2: Start the logging task. Start the dagroup object. By default, the object
acquires 120 records at 0.5-second intervals, and then stops. Wait for the object
to stop logging data.

start(grp)
wait(grp)

Step 3: View the event log. Access the EventLog property of the opcda client
object. The execution of the group logging task generated two events: start and
stop. Thus the value of the EventLog property is a 1-by-2 array of event
structures.

events = da.EventLog
events =

1x2 struct array with fields:
 Type
 Data

To list the events that are recorded in the EventLog property, examine the
contents of the Type field.

{events.Type}
ans =
 'Start' 'Stop'

To get information about a particular event, access the Data field in that
event structure. The example retrieves information about the stop event.

stopdata = events(2).Data

stopdata =
 LocalEventTime: [2004 3 2 21 33 45.8750]
 GroupName: 'CallbackTest'
 RecordsAcquired: 120

Step 4: Clean up. Always remove OPC Toolbox objects from memory, and the
variables that reference them, when you no longer need them. Deleting the
opcda client object also deletes the group and item objects.
6-13

6 Using Events and Callbacks

6-1
disconnect(da)
delete(da)
clear da grp itm1
4

Creating and Executing Callback Functions
Creating and Executing Callback Functions
The power of using event callbacks is that you can perform processing in
response to events. You decide which events you want to associate callbacks
with and which functions these callbacks execute.

This section

• Describes how to create a callback function

• Describes how to specify the function as the value of a callback property

• Provides an example of using event callbacks. The example shows how to use
callbacks to view logged data in a figure window while a logging task is in
progress.

Note Callback function execution might be delayed if the callback involves a
CPU-intensive task, or if MATLAB is processing another task.

Creating Callback Functions
M-file callback functions require at least two input arguments:

• The OPC Toolbox object

• The event structure associated with the event

The function header for this callback function illustrates this basic syntax.

function mycallback(obj,event)

The first argument, obj, is the OPC Toolbox object itself. Because the object is
available, you can use in your callback function any of the toolbox functions,
such as getdata, that require the object as an argument. You can also access
all object properties, including the parent and children of the object.

The second argument, event, is the event structure associated with the event.
This event information pertains only to the event that caused the callback
function to execute. For a complete list of supported event types and their
associated event structures, see “Event Structures” on page 6-9.

In addition to these two required input arguments, you can also specify
application-specific arguments for your callback function.
6-15

6 Using Events and Callbacks

6-1
Note If you specify input arguments in addition to the object and event
arguments, you must use a cell array when specifying the name of the
function as the value of a callback property. For more information, see
“Specifying Callback Functions” on page 6-17.

Example: Writing a Callback Function
This example implements a callback function for a records acquired event. This
callback function enables you to monitor the records being acquired by viewing
the most recently acquired records in a plot window.

To implement this function, the callback function acquires the last 60 records
of data (or fewer if not enough data is available in the OPC Toolbox engine) and
displays the data in a MATLAB figure window. The function also accesses the
event structure passed as an argument to display the time stamp of the event.
The drawnow command in the callback function forces MATLAB to update the
display.

function display_opcdata(obj,event)

numRecords = min(obj.RecordsAvailable, 60);
lastRecords = peekdata(obj,numRecords);
[i, v, q, t, et] = opcstruct2array(lastRecords);
plot(t, v);
isBad = strncmp('Bad', q, 3);
isRep = strncmp('Repeat', q, 6);
hold on
for k=1:length(i)
 h = plot(t(isBad(:,k),k), v(isBad(:,k),k), 'o');
 set(h,'MarkerEdgeColor','k', 'MarkerFaceColor','r')
 h = plot(t(isRep(:,k),k), v(isRep(:,k),k), '*');
 set(h,'MarkerEdgeColor',[0.75, 0.75, 0]);
end
axis tight;
set(gca,'YLim',[0, 200]);
datetick('x','keeplimits');
eventTime = event.Data.LocalEventTime;
title(sprintf('Event occured at %s', ...
 datestr(eventTime, 13)));
6

Creating and Executing Callback Functions
drawnow; % force an update of the figure window
hold off;

To see how this function can be used as a callback, see “Example: Viewing
Recently Logged Data” on page 6-19.

Specifying Callback Functions
You associate a callback function with a specific event by setting the value of
the OPC Toolbox object property associated with that event. You can specify
the callback function as the value of the property in one of three ways:

• Text string

• Cell array

• Function handle

The following sections provide more information about each of these options.

Note To access the object or event structure passed to the callback function,
you must specify the function as a cell array or as a function handle.

Using a Text String to Specify Callback Functions
You can specify the callback function as a string. For example, this code
specifies the callback function mycallback as the value of the start event
callback property StartFcn for the group object grp.

grp.StartFcn = 'mycallback';

In this case, the callback is evaluated in the MATLAB workspace.

Using a Cell Array to Specify Callback Functions
You can specify the callback function as a text string inside a cell array.

For example, this code specifies the callback function mycallback as the value
of the start event callback property StartFcn for the group object grp.

grp.StartFcn = {'mycallback'};
6-17

6 Using Events and Callbacks

6-1
To specify additional parameters, include them as additional elements in the
cell array.

time = datestr(now,0);
grp.StartFcn = {'mycallback',time};

The first two arguments passed to the callback function are still the OPC
Toolbox object (obj) and the event structure (event). Additional arguments
follow these two arguments.

Using Function Handles to Specify Callback Functions
You can specify the callback function as a function handle.

For example, this code specifies the callback function mycallback as the value
of the start event callback property StartFcn for the group object grp.

grp.StartFcn = @mycallback;

To specify additional parameters, include the function handle and the
parameters as elements in the cell array.

time = datestr(now,0);
grp.StartFcn = {@mycallback,time};

If you are executing a local callback function from within an M-file, you must
specify the callback as a function handle.

Specifying a Toolbox Function as a Callback
In addition to specifying callback functions of your own creation, you can also
specify toolbox functions as callbacks. For example, this code sets the value of
the stop event callback to the OPC Toolbox start function.

grp.StopFcn = @start;

Disabling Callbacks
If an error occurs in the execution of the callback function, the toolbox disables
the callback and displays a message similar to the following.

start(grp)
??? Error using ==> myrecords_cb
Too many input arguments.

Warning: The RecordsAcquiredFcn callback is being disabled.
8

Creating and Executing Callback Functions
To enable a callback that has been disabled, set the value of the property
associated with the callback.

Example: Viewing Recently Logged Data
This example configures an OPC Toolbox object hierarchy and sets the records
acquired event callback function property to the display_opcdata function,
created in “Example: Writing a Callback Function” on page 6-16.

When run, the example displays the last 40 records of acquired data every time
5 records have been acquired. Repeat values are highlighted with magenta
circles, and bad values are highlighted with red circles.

Step 1: Create the OPC Toolbox object hierarchy. This example creates a hierarchy of
OPC Toolbox objects for the Matrikon Simulation Server. To run this example
on your system, you must have the Matrikon Simulation Server installed.
Alternatively, you can replace the values used in the creation of the objects
with values for a server you can access.

da = opcda('localhost','Matrikon.OPC.Simulation.1');
connect(da);
grp = addgroup(da,'CallbackTest');
itm1 = additem(grp,'Triangle Waves.Real8');
itm2 = additem(grp,'Saw-toothed Waves.UInt2');

Step 2: Configure property values. This example sets the UpdateRate value to
0.2 seconds, and the RecordsToAcquire property to 200. The example also
specifies as the value of the RecordsAcquiredFcn callback the event callback
function display_opcdata, created in “Example: Writing a Callback Function”
on page 6-16. The object will execute the RecordsAcquiredFcn every 5 records,
as specified by the value of the RecordsAcquiredFcnCount property.

set(grp,'UpdateRate',0.2);
set(grp,'RecordsToAcquire',200);
set(grp,'RecordsAcquiredFcnCount',5);
set(grp,'RecordsAcquiredFcn',@display_opcdata);

Step 3: Acquire data. Start the dagroup object. Every time 5 records are acquired,
the object executes the display_opcdata callback function. This callback
function displays the most recently acquired records logged to the memory
buffer.
6-19

6 Using Events and Callbacks

6-2
start(grp)
wait(grp)

Step 4: Clean up. Always remove OPC Toolbox objects from memory, and the
variables that reference them, when you no longer need them. Deleting the
opcda client object also deletes the group and item objects.

disconnect(da)
delete(da)
clear da grp itm1 itm2
0

7

Using the OPC Blockset
Library

The OPC Toolbox includes a Simulink interface called the OPC Blockset library. This chapter
describes how to use the blocks of the OPC Blockset library in a Simulink model to communicate with
OPC servers.

Overview (p. 7-2) Introduces the OPC Blockset library.

Example: Reading and
Writing Data from the
Matrikon OPC Simulation
Server (p. 7-3)

Provides a simple example of using the library in a model.

7 Using the OPC Blockset Library

7-2
Overview
The OPC Blockset library is a tool for sending data from your Simulink model
to an OPC server, or querying an OPC server to receive live data into your
model. You use blocks from the OPC Blockset library with blocks from other
Simulink libraries to create models capable of sophisticated OPC server
communications.

The OPC Blockset library requires Simulink, a tool for simulating dynamic
systems. Simulink is a model definition environment. Use Simulink blocks to
create a block diagram that represents the computations of your system or
application. Simulink is also a model simulation environment. Run the block
diagram to see how your system behaves. If you are new to Simulink, read
“Getting Started” in the Simulink documentation to better understand its
functionality.

The best way to learn about the OPC Blockset library is to see an example. The
section “Example: Reading and Writing Data from the Matrikon OPC
Simulation Server” on page 7-3 provides a simple example. For more detailed
information about the blocks in the OPC Blockset library, see Chapter 10,
“Block Reference.”

Example: Reading and Writing Data from the Matrikon OPC Simulation Server
Example: Reading and Writing Data from the Matrikon
OPC Simulation Server

This section provides a step-by-step example to illustrate how to use the OPC
Blockset library. The example builds a simple model using the blocks in the
OPC Blockset library with blocks from other Simulink libraries.

This example writes a sine wave to the Matrikon OPC Simulation Server, and
reads the data back from the same server. You use the OPC Write block to send
data to the OPC server, and the OPC Read block to read that same data back
into your model.

The steps in this example include

• “Step 1: Open the OPC Blockset Library” on page 7-4

• “Step 2: Create a New Model” on page 7-5

• “Step 3: Drag the OPC Toolbox Blocks into the Model” on page 7-6

• “Step 4: Drag Other Blocks to Complete the Model” on page 7-7

• “Step 5: Configure OPC Servers for the Model” on page 7-9

• “Step 6: Specify the Block Parameter Values” on page 7-12

• “Step 7: Connect the Blocks” on page 7-15

• “Step 8: Run the Simulation” on page 7-16

Note To run the sample code in this example, you must have the Matrikon
OPC Simulation Server available on your local machine. To download the
Matrikon Simulation Server, visit http://www.matrikon.com. The code can
be used with other servers with only minor changes.
7-3

7 Using the OPC Blockset Library

7-4
Step 1: Open the OPC Blockset Library
To open the OPC Blockset library, first start the Simulink Library Browser. To
start the Simulink Library Browser, enter

simulink

at the MATLAB prompt. MATLAB opens the Simulink Library Browser
window. The left pane contains a list of available blocksets in alphabetical
order.

To open the OPC Blockset library, click its entry in the tree. When you open a
library, Simulink loads the library and displays its blocks.

Selecting the OPC Blockset Library in the Simulink Library Browser

For more information about opening the library, see “Opening the Blockset
Library” in Chapter 10.

Click here to
open the
library.

Example: Reading and Writing Data from the Matrikon OPC Simulation Server
Step 2: Create a New Model
To use a block, you must add it to an existing model or create a new model.

1 To create a new model, click the File menu in the Simulink Library Browser
and select New -> Model. Simulink opens an empty model window on the
display.

2 Use the Save option to assign the new model a name.
7-5

7 Using the OPC Blockset Library

7-6
Step 3: Drag the OPC Toolbox Blocks into the Model
The OPC Blockset library contains four blocks: OPC Configuration, OPC
Quality Parts, OPC Read, and OPC Write. You can use these blocks to
configure and manage connections to servers, to send and receive live data
between your OPC server and your simulation, and to analyze OPC quality.

To use the blocks in a model, click each block in the library and, holding the
mouse button down, drag the block into the model window. For this example,
you need one instance each of the OPC Configuration, OPC Write, and OPC
Read block in your model.

Dragging OPC Toolbox Blocks into Model Window

Drag blocks into model.

Example: Reading and Writing Data from the Matrikon OPC Simulation Server
Step 4: Drag Other Blocks to Complete the Model
Your model requires three more blocks. One block provides the data sent to the
server; the other two blocks display the data received from the server.

To send a sine wave to the server, you can use the Sine Wave block. To access
the Sine Wave block, expand the Simulink node in the browser tree, and click
the Sources library entry. From the blocks displayed in the right panel, drag
the Sine Wave block into the model and place it to the left of the OPC Write
block.

Dragging Sine Wave Block to Model Window

Drag the Sine Wave block into model.
7-7

7 Using the OPC Blockset Library

7-8
You can use the Scope block to show the value received from the server, and a
Display block to view the quality of the item. (You will remove the time stamp
output port in the next step.) To access the Scope block, click the Sinks library
entry in the expanded Simulink node in the browser tree. From the blocks
displayed in the right panel, drag the Scope block into the model and place it
above and to the right of the OPC Read block. Also drag a Display block into
the model and place it below the Scope block.

Dragging Display and Scope Blocks to Model Window

Drag the Display and Scope blocks into
model.

Example: Reading and Writing Data from the Matrikon OPC Simulation Server
Step 5: Configure OPC Servers for the Model
To communicate with OPC servers from Simulink, you first need to configure
those servers in the model. The OPC Configuration block manages and
configures OPC servers for a Simulink model. Each OPC Read or OPC Write
block uses one server from the configured servers, and defines the items to read
from or write to.

1 Double-click the OPC Configuration block to open its parameters dialog.
7-9

7 Using the OPC Blockset Library

7-1
2 Click Configure OPC Clients to open the OPC Client Manager.

3 Click Add to open the OPC Server Properties dialog. Specify the ID of the
server as 'Matrikon.OPC.Simulation.1' (or click Select and choose the
server from the list of available OPC servers).
0

Example: Reading and Writing Data from the Matrikon OPC Simulation Server
4 Click OK to add the OPC server to the OPC Client Manager.

The Matrikon OPC Simulation Server is now available throughout the
model for reading and writing.

5 Your model will use default values for all other settings in the OPC
Configuration block. Click OK in the OPC Configuration dialog to close that
dialog.
7-11

7 Using the OPC Blockset Library

7-1
Step 6: Specify the Block Parameter Values
You set parameters for the blocks in your model by double-clicking on the block.

1 Double-click the OPC Write block to open its parameters dialog. The
Matrikon server is automatically selected for you as the OPC client to use in
this block. You need to specify the items for writing.

2 Click Add Items to display a name space browser for the Matrikon OPC
Simulation Server.
2

Example: Reading and Writing Data from the Matrikon OPC Simulation Server
3 Expand the Simulation Items node in the name space, then expand the
Bucket Brigade node. Select the Real8 node and click >> to add that item to
the selected items list.

4 Click OK to add the item Bucket Brigade.Real8 to the OPC Write block’s
ItemIDs list.

5 In the OPC Write parameters dialog, click OK to accept the changes and
close the dialog.

6 Double-click the OPC Read block to open its dialog. Add the same item to the
OPC Read block, repeating steps 2-5 that you followed for the OPC Write
block in this section.

7 Set the read mode to 'Synchronous (device)' and the sample time for the
block to 0.2.
7-13

7 Using the OPC Blockset Library

7-1
8 Also uncheck the 'Show timestamp port' option. This step removes the
time stamp output port from the OPC Read block.
4

Example: Reading and Writing Data from the Matrikon OPC Simulation Server
Step 7: Connect the Blocks
Make a connection between the Sine Wave block and the OPC Write block.
When you move the cursor near the output port of the Sine Wave block, the
cursor becomes crosshairs. Click on the Sine Wave output port and hold the
mouse button, drag to the input port of the OPC Write block, and release the
button.

In the same way, make a connection between the first output port of the OPC
Read block (labeled V) and the input port of the Scope block. Then connect the
other output port of the OPC Read block (labeled Q) to the input port of the
Display block.

Note that the OPC Write and OPC Read blocks do not directly connect together
within the model. The only communication between them is through an item
on the server, which you defined in “Step 5: Configure OPC Servers for the
Model” on page 7-9.
7-15

7 Using the OPC Blockset Library

7-1
Step 8: Run the Simulation
Before you run the simulation, double-click the Scope block to open the scope
view.

To run the simulation, click the Start button on the model window toolbar.
Alternatively, you can use the Simulation menu in the model window and
choose the Start option.

The model writes a sine wave to the OPC server, reads back from the server,
and displays the wave in the scope trace. In addition, the quality value is set to
192, which indicates a good quality (see Appendix A, “OPC Quality Strings”).

Click Start button to run the simulation.
6

Example: Reading and Writing Data from the Matrikon OPC Simulation Server
While the simulation is running, the status bar at the bottom of the model
window updates the progress of the simulation, and the sine wave is displayed
in the Scope window.
7-17

7 Using the OPC Blockset Library

7-1
8

8

Function Reference

This chapter provides descriptions of all OPC Toolbox functions that you can use directly.

Functions — Categorical List (p. 8-2) Contains a series of tables that provide brief descriptions
of OPC Toolbox functions, arranged by category.

Functions — Alphabetical List (p. 8-7) Individual reference pages for each function, listed
alphabetically.

8 Function Reference

8-2
Functions — Categorical List
This section summarizes all the functions you can use in the OPC Toolbox. The
functions are listed in the following categories:

• Object Creation and Configuration Functions (p. 8-3)

• Server Exploration Functions (p. 8-4)

• Data Access Functions (p. 8-4)

• Logging and Buffering Functions (p. 8-5)

• Simulink Support Functions (p. 8-5)

• General Functions (p. 8-6)

Getting Command-Line Function Help
To get command-line function help, you can use the MATLAB help function.
For example, to get help for the opcserverinfo function, type

help opcserverinfo

However, the OPC Toolbox provides “overloaded” versions of several MATLAB
functions. That is, it provides toolbox-specific implementations of these
functions using the same function name.

For example, the OPC Toolbox provides an overloaded version of the isvalid
function. If you type

help isvalid

you get help for the MATLAB Timer object version of this function. You can
determine if a function is overloaded by examining the last section of the help.
For isvalid, the help contains the following overloaded versions (not all are
shown).

Overloaded methods
help serial/isvalid.m
help instrument/isvalid.m.
.
.
.
help opcroot/isvalid.m

Functions — Categorical List
To obtain help on the OPC Toolbox version of this function, type

help opcroot/isvalid

To avoid having to specify which overloaded version you want to view, use the
opchelp function.

opchelp isvalid

You can also use this function to get help on OPC Toolbox object properties.

For more information on overloaded functions and class directories, refer to
“MATLAB Classes and Objects” in the Help browser.

Object Creation and Configuration Functions
The OPC Toolbox provides access to OPC servers through three MATLAB
objects. The OPC Data Access Client object (opcda client object) acts as the
OPC client, controlling the lifespan of the groups associated with that client,
and managing the connection to the OPC server. The Data Access Group object
(dagroup object) controls the lifespan of items associated with the group, and
manages logging and subscription activities associated with those items. The
Data Access Item object (daitem object) represents a link to a server item; a
physical device or a storage location in a SCADA system, DCS or PLC. You
create and configure the objects with the functions listed in the following table
(arranged in typical order of usage).

addgroup Add data access group to opcda object

additem Add data access items to dagroup object

clonegroup Clone group into new private group on same client

connect Connect OPC data access (opcda) object to server

copyobj Make copy of OPC Toolbox object

delete Remove OPC Toolbox objects from memory

disconnect Disconnect OPC data access (opcda) object from server

disp Display method for OPC Toolbox objects

get Get OPC Toolbox object properties

isvalid True for OPC Toolbox objects that are not deleted
8-3

8 Function Reference

8-4
Server Exploration Functions
The OPC server provides access to measurement devices or actuators through
tags. The tags are arranged in a name space on the server. Each tag has specific
properties associated with that tag. You explore the server name space, tag
properties, and server configuration information using the functions listed in
the following table.

Data Access Functions
A primary function of OPC Data Access Servers is to allow you to read and
write information to one or more tags. The OPC Toolbox provides you with
functions for reading data from an OPC Server using synchronous and
asynchronous read operations, as well as through server-initiated events. You
can also write data to an OPC Server synchronously or asynchronously.

makepublic Convert private group into public group

opcda Construct OPC data access client object

removepublicgroup Remove public group from server

set Configure or display OPC Toolbox object properties

flatnamespace Flatten hierarchical OPC name space

getnamespace Return or view OPC server name space

opcserverinfo Return version, server, and status information

serveritemprops Return property information for items in OPC server
name space

serveritems Query server or name space for fully qualified item IDs

cancelasync Cancel asynchronous read and write operations

read Read data synchronously from group or items

readasync Read data asynchronously from group or items

refresh Read all active items in group

write Write values to group or items

writeasync Asynchronously write values to group or items

Functions — Categorical List
Logging and Buffering Functions
Using the OPC Toolbox you can log data provided by OPC Data Access Servers
to disk and/or memory. Logging data to disk allows you to store data for
historical analysis at a later stage. Logging data to memory allows you to
quickly store time histories of your OPC Server data, and retrieve it for
analysis and reporting tasks.

The following table lists the logging and buffering functions in typical order of
usage.

Simulink Support Functions
You can use the blocks of the OPC Blockset library in a Simulink model to
communicate with OPC servers. For more information on using the OPC
Blockset library, see Chapter 7, “Using the OPC Blockset Library.”

The following table lists the functions that create Simulink blocks from
MATLAB group objects.

start Start a logging task

wait Suspend MATLAB execution until object has stopped
logging

peekdata Preview most recently acquired data

stop Stop a logging task

getdata Return logged records from OPC Toolbox engine to
MATLAB workspace

opcread Return logged records from disk to MATLAB workspace

opcstruct2array Convert OPC Data from structure to array format

flushdata Remove all logged data associated with dagroup object

genslread Generate Simulink OPC Read block from MATLAB group
object

genslwrite Generate Simulink OPC Write block from MATLAB group
object
8-5

8 Function Reference

8-6
General Functions
The OPC Toolbox provides a number of functions for managing OPC Toolbox
objects and connections to OPC Servers, and for getting help on using the OPC
Toolbox.

cleareventlog Clear event log, discarding all events

genslread Generate Simulink OPC Read block from MATLAB group
object

genslwrite Generate Simulink OPC Write block from MATLAB group
object

load Load OPC Toolbox objects from MAT-file

obj2mfile Convert OPC Toolbox object to MATLAB code

opccallback Display event information for OPC Toolbox callbacks

opcfind Find OPC Toolbox objects with specific properties

opchelp Return OPC Toolbox function and property help

opcqparts Extract quality parts from OPC quality ID

opcqstr Convert OPC quality ID into readable string

opcregister Install and register OPC Foundation Core Components

opcreset Disconnect and delete all OPC Toolbox objects

opcsupport Run OPC Toolbox troubleshooting utility

opctool Open OPC Tool graphical user interface

openosf Open OPC Tool GUI session file

propinfo Return property information for OPC Toolbox objects

save Save OPC Toolbox objects to MAT-file

showopcevents Display event log summary for OPC Toolbox events

Functions — Alphabetical List
Functions — Alphabetical List
This section contains detailed descriptions of all toolbox functions. Each
function reference page contains some or all of this information:

• The function name

• The function purpose

• The function syntax

All valid input argument and output argument combinations are shown. In
some cases, an ellipsis (. . .) is used for the input arguments. This means that
all preceding input argument combinations are valid for the specified output
argument(s).

• A description of each argument

• A description of each function syntax

• Additional remarks about usage

• An example of usage

• Related functions and properties
8-7

addgroup
8addgroupPurpose Add data access group to opcda object

Syntax GrpObj = addgroup(DAObj)
GrpObj = addgroup(DAObj,'GName')
GrpObj = addgroup(DAObj,'GName','GrpType')

Description GrpObj = addgroup(DAObj) adds a group to the opcda object DAObj. A group is
a container for a client to organize and manipulate data items. Typically, you
create different groups to support different update rates, activation status,
callbacks, etc.

GrpObj is a dagroup object. By default, GrpObj has the Active property set to
'on', GroupType set to 'private', and the Subscription property set to 'on'.

If DAObj is already connected to the server when addgroup is called, a group
name is requested from the server. If the server does not supply a group name,
or the object is not connected to a server, a unique name is automatically
assigned to GrpObj. The unique name follows the convention 'groupN' where
N is an integer. You can change this name with the group’s Name property.

GrpObj = addgroup(DAObj,'GName') adds a group to the OPC data access
object DAObj with the group name given by 'GName'. The group name must be
unique among other group names within Obj.

GrpObj = addgroup(DAObj,'GName','GrpType') adds a group to the opcda
object DAObj with the group type specified by 'GrpType'. If 'GrpType' is
'private' (the default) the group is configured to be private to DAObj, and no
other client connected to the OPC server can access that group. If 'GrpType' is
'public' then a connection is made to the server’s public group named GName.
To make a connection to a public group named GName, that group must exist on
the server as a public group. You create public groups on the server using the
makepublic function. Note that some servers do not support public groups; you
can verify whether a server supports public groups by running
opcserverinfo(DAObj) and checking the SupportedInterfaces field for the
IOPCServerPublicGroups interface.

You can add items to GrpObj using the additem function, if the group type is
'private'. For a public group, the items are already defined, and are
automatically created when you connect to the public group using addgroup.
8-8

addgroup
See Also additem, opcserverinfo
8-9

additem
8additemPurpose Add data access items to dagroup object

Syntax IObj = additem(GObj,'IName')
IObj = additem(GObj,'IName','DataType')
IObj = additem(GObj,'IName','DataType','Active')

Description IObj = additem(GObj,'IName') adds items to the group object GObj with fully
qualified item IDs given by IName. The object IObj is the created item object or
objects. You specify IName as a single item ID or as a cell array of item IDs.

The daitem object provides a connection to a data variable in the physical
device and returns information about the data variable, such as its value,
quality, and time stamp. Note that you cannot add a given item to the same
group more than once. However, you can add the same item to different groups.

By default, IObj is active; that is, if the group’s Subscription property is on,
the item’s Value, Quality, and Timestamp properties will be updated at the
group’s UpdateRate.

Servers often require item IDs to be specified in the correct case. You can use
the serveritems function to find valid item IDs.

Note You cannot add items to a public group. A public group has a fixed set of
item IDs common to all clients sharing that group. The GroupType property of
a dagroup object indicates the type of group.

IObj = additem(GObj,'IName','DataType') adds items to the group object
GObj with the requested data type given by 'DataType'. You specify
'DataType' as a cell array of strings, one for each item ID. 'DataType' is the
data type in which the item’s value will be stored in MATLAB. The supported
data types are 'logical', 'int8', 'uint8', 'int16', 'uint16', 'int32',
'uint32', 'single', 'double', 'char', and 'date'. Note that if the requested
data type is rejected by the server, the item is not added. The requested data
type is stored in the DataType property. The canonical data type (the data type
used by the server to store the item value) is stored in the CanonicalDataType
property.
8-10

additem
IObj = additem (GObj,'IName','DataType','Active') adds items to the
group object GObj with active status given by 'Active'. You specify 'Active'
as a cell array of strings, one for each item ID. 'Active' can be 'on' or 'off'.
The active status is stored in the Active property.

Examples Create a client and a group.

da = opcda('localhost', 'Matrikon.OPC.Simulation');
connect(da);
grp = addgroup(da, 'ExAddItem');

Add two items with their canonical data types.

itm = additem(grp, {'Random.Real4', 'Random.Real8'})

Add an item with a 'double' data type.

itmDbl = additem(grp, 'Random.Int2', 'double')

Add an inactive item.

itmInact = additem(grp, 'Random.UInt4', 'double', 'off')

See Also getnamespace, serveritems
8-11

cancelasync
8cancelasyncPurpose Cancel asynchronous read and write operations

Syntax cancelasync(GObj)
cancelasync(GObj,TransID)

Description cancelasync(GObj) cancels all asynchronous read or write operations that are
in progress for the group object specified by GObj. Note that this function is
asynchronous and does not block the MATLAB command line.

After the in-progress asynchronous operations are cancelled, the OPC server
generates a cancel async event. If you specify an M-file callback for the
CancelAsyncFcn property, then the callback function executes when this event
occurs.

cancelasync(GObj,TransID) cancels the asynchronous operation(s), specified
by the transaction ID(s) given by TransID. You can cancel specific
asynchronous requests using this syntax.

See Also readasync, writeasync
8-12

cleareventlog
8cleareventlogPurpose Clear event log, discarding all events

Syntax cleareventlog(DAObj)

Description cleareventlog(DAObj) clears the event log for opcda object DAObj. DAObj can
be an array of objects. Any events stored in the EventLog property of the objects
are discarded.
8-13

clonegroup
8clonegroupPurpose Clone group into new private group on same client

Syntax NewGObj = clonegroup(GObj,'NewName')

Description NewGObj = clonegroup(GObj,'NewName') clones the dagroup object specified
by GObj, making a private group NewGObj with name NewName. NewName must be
a unique group name. GObj can be a private group or a public group.

The new group NewGObj is independent of the original group, but with the same
parent (opcda object) and the same items as that group. All the group and item
properties are duplicated with the exception of the following:

• The Active property is configured to 'off'.

• The GroupType property is configured to 'private'.

You use clonegroup primarily when you want to create a private duplicate of
a public group that you can then modify. If you want to create a copy of a group
in another client, use the copyobj function.

See Also copyobj, makepublic
8-14

connect
8connectPurpose Connect opcda object to server

Syntax connect(DAObj)

Description connect(DAObj) connects the opcda object DAObj to the OPC server specified
by the Host and ServerID properties. When DAObj is connected, the Status
property is set to 'connected'. When DAObj is disconnected, the Status
property is set to 'disconnected'. You can disconnect DAObj from the server
with the disconnect function.

If DAObj is an array of objects and one of the objects cannot be connected, an
attempt will be made to connect the remaining objects in the array, and a
warning message will be generated. If none of the objects can be connected, an
error message will be generated.

It is possible to create groups and items before connecting to the server.
However, servers impose restrictions on client group and item names.
Therefore, if you create a group hierarchy and then connect to the server,
groups or items that cannot be supported by the server are automatically
deleted, and a warning message is issued.

See Also disconnect
8-15

copyobj
8copyobjPurpose Make copy of OPC Toolbox object

Syntax NewObj = copyobj(Obj)
NewObj = copyobj(Obj, ParentObj)

Description NewObj = copyobj(Obj) makes a copy of all the objects in Obj, and returns
them in NewObj. Obj can be a scalar OPC Toolbox object, or a vector of OPC
Toolbox objects.

NewObj = copyobj(Obj, ParentObj) makes a copy of the objects in Obj inside
the parent object ParentObj. ParentObj must be a valid scalar parent object for
Obj. If any objects in Obj cannot be created in ParentObj, a warning will be
generated.

A copied OPC Toolbox object contains new versions of all children, their
children, and any parents that are required to construct that object. A copied
object is different from its parent object in the following ways:

• The values of read-only properties will not be copied to the new object. For
example, if an object is saved with a Status property value of 'connected',
the object will be recreated with a Status property value of 'disconnected'
(the default value). You can use propinfo to determine if a property is
read-only. Specifically, a connected opcda object is copied in the disconnected
state, and a copy of a logging dagroup object is not reset to the logging state.

• A copied dagroup object that has records in memory from a logging session is
copied without those records.

See Also obj2mfile, propinfo
8-16

delete
8deletePurpose Remove OPC Toolbox objects from memory

Syntax delete(Obj)

Description delete(Obj) removes the OPC Toolbox object Obj from memory. Obj can be an
array of objects. A deleted object becomes invalid and references to that object
should be removed from the workspace with the clear command. If you delete
an object that contains children (groups or items), then the children are also
deleted and references to these children should be removed.

If multiple references to an OPC Toolbox object exist in the workspace, then
deleting one object invalidates the remaining references.

If Obj is an opcda object connected to the server when delete is called, the
object will be disconnected and then deleted.

Examples da = opcda('localhost','Matrikon.OPC.Simulation');
connect(da);
grp = addgroup(da,'DeleteEx');
itm = additem(grp,'Random.Real4');
r = read(grp)
delete(grp); % deletes itm as well
clear grp itm

See Also disconnect, isvalid
8-17

disconnect
8disconnectPurpose Disconnect opcda object from server

Syntax disconnect(DAObj)

Description disconnect(DAObj) disconnects the opcda object DAObj from the server. DAObj
can be an array of objects.

If DAObj was successfully disconnected from the server, its Status property is
set to 'disconnected'. You can reconnect DAObj to the server with the connect
function.

If DAObj is an array of objects and one of the objects cannot be disconnected
from the server, the remaining objects in the array will be disconnected from
the server and a warning will be displayed. If no objects could be disconnected
from their server, an error will be generated.

See Also connect, propinfo
8-18

disp
8dispPurpose Display method for OPC Toolbox objects

Syntax Obj
disp(Obj)

Description Obj or disp(Obj) displays summary information for OPC Toolbox object Obj.

If Obj is an array of objects, disp outputs a table of summary information about
the objects in the array.

In addition to the syntax shown above, you can display summary information
for Obj by excluding the semicolon when

• Creating an OPC Toolbox object, using the opcda, addgroup, or additem
functions

• Configuring property values using dot notation

Example This example illustrates the summary display of a data access client.

da = opcda('localhost', 'My.Server.1')

da =

Summary of OPC Data Access Client Object: localhost/My.Server.1

 Server Parameters
 Host : localhost
 ServerID : My.Server.1
 Status : disconnected
 Timeout : 10 seconds

 Object Parameters
 Group : 0-by-1 dagroup object
 Event Log : 0 of 1000 events

This example shows the summary information displayed for an array of data
access clients.

da2 = opcda('localhost', 'My.Second.Server.1');

[da da2]
8-19

disp
 OPC Data Access Object Array:

 Index: Status: Name:
 1 disconnected localhost/My.Server.1
 2 disconnected localhost/My.Second.Server.1

See Also opcda, addgroup, additem
8-20

flatnamespace
8flatnamespacePurpose Flatten hierarchical OPC name space

Syntax FNS = flatnamespace(NS)

Description FNS = flatnamespace(NS) flattens the hierarchical name space NS, by
recursively removing all information in the Nodes fields of NS and placing that
information into additional entries in the root structure of FNS. You obtain a
hierarchical name space using the 'hierarchical' flag in getnamespace.

Examples This example retrieves the name space for the Matrikon Simulation Server,
and flattens the name space after retrieval.

da = opcda('localhost', 'Matrikon.OPC.Simulation');
connect(da);
hierNS = getnamespace(da)
flatNS = flatnamespace(hierNS)

See Also getnamespace, serveritems
8-21

flushdata
8flushdataPurpose Remove all logged data associated with dagroup object

Syntax flushdata(GObj)

Description flushdata(GObj) removes all records associated with dagroup object GObj
from the OPC Toolbox engine, and sets RecordsAvailable to 0 for that object.

GObj can be a scalar dagroup object, or a vector of dagroup objects.

See Also getdata, peekdata, start, stop
8-22

genslread
8genslreadPurpose Generate Simulink OPC Read block from MATLAB group object

Syntax BlkPath = genslread(GrpObj)
BlkPath = genslread(GrpObj, DestSys)

Description BlkPath = genslread(GrpObj) generates an OPC Read block from the
dagroup object GrpObj. The OPC Read block is placed in a new Simulink model.
The generated OPC Read block has the same name, update rate, and items as
GrpObj. If all items in GrpObj have the same data type, that data type is
assigned to the OPC Read block’s Value port. BlkPath is returned as the full
path to the new OPC Read block.

BlkPath = genslread(GrpObj, DestSys) generates the OPC Read block and
places it into the system defined by DestSys. DestSys must be a model name or
a path to a subsystem block. The OPC Read block is automatically placed in a
location that attempts to minimize overlap of lines and blocks. However, the
block might be placed over an existing annotation.

Examples Create a group object with two items and an update rate of 2 seconds.

da = opcda('localhost', 'Matrikon.OPC.Simulation');
grp = addgroup(da, 'ExOPCREAD');
itm1 = additem(grp, 'Triangle Waves.Real8');
itm2 = additem(grp, 'Saw-Toothed Waves.Int2');
grp.UpdateRate = 2;

Construct an OPC Read block from the group.

blkPath = genslread(grp)

See Also genslwrite
8-23

genslwrite
8genslwritePurpose Generate Simulink OPC Write block from MATLAB group object

Syntax BlkPath = genslwrite(GrpObj)
BlkPath = genslwrite(GrpObj, DestSys)

Description BlkPath = genslwrite(GrpObj) generates an OPC Write block from the
dagroup object GrpObj. The OPC Write block is placed in a new Simulink
model. The generated OPC Write block has the same name, update rate, and
items as GrpObj. BlkPath is returned as the full path to the new OPC Write
block.

BlkPath = genslwriteGrpObj, DestSys) generates the OPC Write block and
places it into the system defined by DestSys. DestSys must be a model name or
a path to a subsystem block. The OPC Write block is automatically placed in a
location that attempts to minimize overlap of lines and blocks. However, the
block might be placed over an existing annotation.

Examples Create a group object with two items and an update rate of 2 seconds.

da = opcda('localhost', 'Matrikon.OPC.Simulation');
grp = addgroup(da, 'ExOPCREAD');
itm1 = additem(grp, 'Triangle Waves.Real8');
itm2 = additem(grp, 'Saw-Toothed Waves.Int2');
grp.UpdateRate = 2;

Construct an OPC Write block from the group.

blkPath = genslwrite(grp)

See Also genslread
8-24

get
8getPurpose Get OPC Toolbox object properties

Syntax Val = get(Obj,'PropName')
get(Obj)
Val = get(Obj)

Description Val = get(Obj,'PropName') returns the value Val of the property specified
by PropName for the OPC Toolbox object Obj.

If PropName is a cell array of strings containing property names, then get will
return a 1-by-N cell array of values, where N is the length of PropName. If Obj is
a vector of OPC Toolbox objects, then Val will be an M-by-N cell array of property
values where M is equal to the length of Obj and N is equal to the number of
properties requested.

get(Obj) displays all property names and their current values for the OPC
Toolbox object Obj.

Val = get(Obj) returns a structure, Val, where each field name is the name
of a property of Obj containing the value of that property. If Obj is an array of
OPC Toolbox objects, Val will be an M-by-1 structure array.

Examples This example obtains the value of the Status and Group properties of an opcda
object, and then displays all of the properties of the object.

da = opcda('localhost','Dummy.Server');
get(da, {'Status','Group'})
out = get(da,'Status')
get(da)

See Also set, propinfo, opchelp
8-25

getdata
8getdataPurpose Return logged records from OPC Toolbox engine to MATLAB workspace

Syntax S=getdata(GObj)
S=getdata(GObj,NRec)
[ItmID,Val,Qual,TStamp,ETime] = getdata(GObj,'DataType')
[ItmID,Val,Qual,TStamp,ETime] = getdata(GObj,NRec,'DataType')

Description S=getdata(GObj) returns the number of records specified in the
RecordsToAcquire property of dagroup object GObj, from the OPC Toolbox
engine. GObj must be a scalar dagroup object.

S is an NRec-by-1 structure array, where NRec is the number of records
returned. S contains the fields 'LocalEventTime' and 'Items'. LocalEventTime
is a date vector corresponding to the local event time for that record. Items is
an NItems-by-1 structure array containing the fields shown below.

S=getdata(GObj,NRec) retrieves the first NRec records from the OPC Toolbox
engine.

[ItmID,Val,Qual,TStamp,ETime] = getdata(GObj,'DataType') and
[ItmID,Val,Qual,TStamp,ETime] = getdata(GObj,NRec,'DataType')
assign the data retrieved from the OPC Toolbox engine to separate arrays.
'DataType' can be any valid MATLAB numeric data type (such as 'double' or
'uint4'), or 'cell'.

ItmID is a 1-by-NItem cell array of item names.

Val is an NRec-by-NItem array of values with the data type specified. If a data
type of 'cell' is specified, then Val is a cell array containing data in the

Field Name Description

ItemID The fully qualified tag name, as a string.

Value The data value. The data type is defined by the Item’s
DataType property.

Quality The data quality, as a string. See Appendix A, “OPC
Quality Strings” for an description of Quality strings.

TimeStamp The time the value was changed, as a date vector.
8-26

getdata
returned data type for each item. Otherwise, Val is a numeric array of the
specified data type.

Note 'DataType' must be set to 'cell' when retrieving records containing
arrays of values, and strings.

Qual is an NRec-by-NItem array of quality strings for each value in Val.

TStamp is an NRec-by-NItem array of MATLAB date numbers representing the
time when the relevant value and quality were stored on the OPC Server.

ETime is an NRec-by-1 array of MATLAB date numbers, corresponding to the
local event time for each record.

Each record logged may not contain information for every item returned, since
data for that item may not have changed from the previous update. When data
is returned as a numeric matrix, the missing item columns for that record are
filled as follows.

getdata is a blocking function that returns execution control to the MATLAB
workspace when one of the following conditions are met:

• The requested number of records becomes available.

• The logging operation is automatically stopped by the engine. If fewer
records are available than the number requested, a warning will be
generated and all available records will be returned.

• You issue a ^C (Control-C). The logging task will not stop, and no data will
be removed from the OPC Toolbox engine.

Argument Behavior for Missing Items

Val The corresponding value entry is set to the previous
value of that item, or to NaN if there is no previous value.

Qual The corresponding quality entry is set to 'Repeat'.

TStamp The corresponding time stamp entry is set to the first
valid time stamp for that record.
8-27

getdata
When getdata completes, the object’s RecordsAvailable property is reduced
by the number of records returned by getdata.

Examples Configure and start a logging task for 60 seconds of data.

da = opcda('localhost', 'Matrikon.OPC.Simulation');
connect(da);
grp = addgroup(da, 'ExOPCREAD');
itm1 = additem(grp, 'Triangle Waves.Real8');
itm2 = additem(grp, 'Saw-Toothed Waves.Int2');
set(grp, 'LoggingMode', 'memory', 'RecordsToAcquire', 60);
start(grp);

Retrieve the first two records into a structure. This operation waits for at least
2 records.

s = getdata(grp, 2)

Retrieve all the remaining data into a double array and plot it with a legend.

[itmID, val, qual, tStamp] = getdata(grp, 'double');
plot(tStamp(:,1),val(:,1),tStamp(:,2),val(:,2));
legend(itmID);
datetick x keeplimits

See Also flushdata, peekdata, start, stop
8-28

getnamespace
8getnamespacePurpose Return or view OPC server name space

Syntax S = getnamespace(DAObj)
S = getnamespace(DAObj, 'Filter1',Val1,'Filter2',Val2, ...)

Description S = getnamespace(DAObj) returns the entire name space of the server
associated with the opcda object specified by DAObj. S is a recursive structure
array representing the name space of the server. Each element of S is a node in
the name space. S contains the fields Name, FullyQualifiedID, NodeType, and
Nodes. The Name field is a descriptive name; FullyQualifiedID is the fully
qualified ItemID of that node; NodeType defines the node as a 'branch' node
(containing other nodes) or 'leaf' node (containing no other nodes); and Nodes
is a structure array with the same fields as S, representing the nodes contained
in this branch of the name space.

S = getnamespace(DAObj, 'Filter1',Val1,'Filter2',Val2, ...) allows
you to filter the retrieved name space based on a number of available browse
filters. Available filters are described in the following table:

BrowseFilter Description

'StartItemID' Specify the FullyQualifiedID of a branch node, as a
string. Only nodes contained in that branch node will
be returned. Some OPC Servers do not support partial
name space retrieval based on this option: An error is
generated if you attempt to use the 'StartItemID'
browse filter on such a server.

'Depth' Specify the depth of the name space that you want
returned. A 'Depth' value of 1 returns only the nodes
contained in the starting position. A 'Depth' value of 2
returns the nodes contained in the starting position
and all of their nodes. A 'Depth' value of Inf returns
all nodes. When combined with the 'StartItemID'
filter, the 'Depth' filter provides a useful way to
investigate a name server hierarchy one layer at a
time.
8-29

getnamespace
Remarks Use flatnamespace to flatten the hierarchical name space.

Examples Return the entire name space for the Matrikon Simulation Server on the local
host.

da = opcda('localhost', 'Matrikon.OPC.Simulation');
connect(da);
nsFull = getnamespace(da)

Return only the first level of the name space.

nsPart = getnamespace(da, 'Depth', 1)

Add the nodes contained in the first branch of the name space to the existing
structure.

nsPart(1).Nodes = getnamespace(da, ...
 'StartItemID', nsPart(1).Name, ...
 'Depth', 1);

'AccessRights' Restricts the search to leaf nodes with particular access
right characteristics. Specify 'read' to return nodes
that include the read access right, and 'write' to
return nodes that include the write access right. An
empty string ('') returns nodes with any access rights.
Note that branch nodes will still be returned in the
name space, in order to contain the leaf nodes that have
the requested access rights.

'DataType' Restricts the search to nodes with a particular
canonical data type. 'DataType' is a string
representing any of the MATLAB numeric data types,
plus 'logical', 'currency', and 'date'. Use the
'DataType' filter to find server items with a specific
data type, such as 'double' or 'date'. Note that
branch nodes will still be returned in the name space,
in order to contain the leaf nodes that have the
required data type.

BrowseFilter Description
8-30

getnamespace
See Also additem, flatnamespace, serveritems
8-31

isvalid
8isvalidPurpose True for OPC Toolbox objects that are not deleted

Syntax A = isvalid(Obj)

Description A = isvalid(Obj) returns a logical array, A, that contains false where the
elements of Obj are deleted OPC Toolbox objects and true where the elements
of Obj are valid objects.

An invalid OPC Toolbox object should be cleared from the workspace with
clear.

Examples Create two valid OPC data access objects.

da(1) = opcda('localhost','Dummy.ServerA');
da(2) = opcda('localhost','Dummy.ServerB');
out1 = isvalid(da)

Delete the first object and make it invalid.

delete(da(1))
out2 = isvalid(da)

Clear the object.

clear da

See Also delete, opchelp
8-32

load
8loadPurpose Load OPC Toolbox objects from MAT-file

Syntax load FileName
load FileName Obj1 Obj2 ...
S = load('FileName','Obj1','Obj2',...)

Description load FileName returns all variables from the MAT-file, FileName, into the
MATLAB workspace.

load FileName Obj1 Obj2 ... returns the specified OPC Toolbox objects,
Obj1, Obj2, ... from the MAT-file, FileName, into the MATLAB workspace.

S = load('FileName','Obj1','Obj2',...) returns the structure, S, with the
specified OPC Toolbox objects, Obj1, Obj2, ... from the MAT-file, FileName,
instead of directly loading the OPC Toolbox objects into the workspace. The
field names in S match the names of the OPC Toolbox objects that were
retrieved. If no objects are specified, then all variables existing in the MAT-file
are loaded.

Values for read-only properties will be restored to their default values upon
loading. For example, the Status property of an opcda object will be restored
to 'disconnected'. You use propinfo to determine if a property is read-only.

See Also opchelp, save, propinfo
8-33

makepublic
8makepublicPurpose Convert private group into public group

Syntax makepublic(GObj)

Description makepublic(GObj) makes the dagroup object specified by GObj public. Public
groups allow you to share data configuration information across multiple OPC
clients. You can check whether a group is public or private using the GroupType
property.

Public groups on a server cannot have the same name. If you attempt to call
makepublic on a private group with the same name as an existing public group,
an error is generated.

Once a group has been made public, you cannot add items to that group or
delete items from that group. You must ensure that a group contains the
required items before making the group public.

Not all OPC data access servers support public groups. If you try to make a
public group on a server that does not support public groups, an error is
generated. To verify that a server supports public groups, use the
opcserverinfo function on the client connected to that server.

Use the clonegroup function to create a private group from a public group.

See Also clonegroup, opcserverinfo
8-34

obj2mfile
8obj2mfilePurpose Convert OPC Toolbox object to MATLAB code

Syntax obj2mfile(DAObj,'FileName')
obj2mfile(DAObj,'FileName','Syntax')
obj2mfile(DAObj,'FileName','Mode')
obj2mfile(DAObj,'FileName','Syntax','Mode')

Description obj2mfile(DAObj,'FileName') converts the opcda object DAObj to the
equivalent MATLAB code using the set syntax and saves the MATLAB code to
a file specified by FileName. If an extension is not specified, the .m extension is
used. Only those properties that are not set to their default values are written
to FileName.

obj2mfile(DAObj,'FileName','Syntax') converts the OPC Toolbox object to
the equivalent MATLAB code using the specified 'Syntax' and saves the code
to the file, FileName. 'Syntax' can be either 'set' or 'dot'. By default, 'set'
is used.

obj2mfile(DAObj,'FileName','Mode') and
obj2mfile(DAObj,'FileName','Syntax','Mode') save the equivalent
MATLAB code for all properties if 'Mode' is 'all', and save only the properties
that are not set to their default values if 'Mode' is 'modified'. By default,
'modified' is used.

If DAObj’s UserData is not empty or if any of the callback properties are set to
a cell array of values or to a function handle, the data stored in those properties
is written to a MAT-file when the OPC Toolbox object is converted and saved.
The MAT-file has the same name as the M-file containing the OPC Toolbox
object code.

The values of read-only properties will not be restored. For example, if an object
is saved with a Status property value of 'connected', the object will be
recreated with a Status property value of 'disconnected' (the default value).
You can use propinfo to determine if a property is read-only.

To recreate DAObj, type the name of the M-file.

Example Create a client with a group and an item, then save that client to disk.

da = opcda('localhost','Dummy.Server');
8-35

obj2mfile
set(da, 'Tag', 'myopcTag','Timeout',300);
grp = addgroup(da, 'TestGroup');
itm = additem(grp, 'Dummy.Tag1');
obj2mfile(da, 'myopc.m','dot','all');

Recreate the client under a different name.

copyOfDA = myopc;

See Also opchelp, propinfo
8-36

opccallback
8opccallbackPurpose Display event information for OPC Toolbox callbacks

Syntax opccallback(Obj,Event)

Description opccallback(Obj,Event) displays a message that contains information about
an OPC Toolbox event. The type of event, the time the event occurred, and the
related data for that event are displayed in the MATLAB Command Window.

Obj is the object associated with the event. Event is a structure that contains
the Type and Data fields. Type is the event type. Data is a structure containing
event-specific information.

opccallback is an example callback function. Use this callback function as a
template for writing your own callback function. By default a dagroup object’s
ReadAsyncFcn, WriteAsyncFcn, and CancelAsyncFcn are set to @opccallback,
and an opcda object’s ErrorFcn and ShutDownFcn are set to @opccallback.

See Also showopcevents
8-37

opcda
8opcdaPurpose Construct OPC data access object

Syntax Obj = opcda('Host','ServerID')
Obj = opcda('Host','ServerID','P1',V1,'P2',V2,...)

Description Obj = opcda('Host','ServerID') constructs an OPC data access object, Obj,
for the host specified by Host and the OPC server ID specified by ServerID.
When you construct Obj, its Status property is initially set to 'disconnected'.
To communicate with the server, you must connect Obj to the server with the
connect function.

Obj = opcda('Host','ServerID','P1',V1,'P2',V2,...) constructs an OPC
data access object, Obj, for the host specified by Host and the OPC server ID
specified by ServerID, with the specified property values. If an invalid property
name or property value is specified, the object will not be created.

Note that the property name/property value pairs can be in any format
supported by the set function, i.e., parameter-value string pairs, structures,
and parameter-value cell array pairs.

At any time, you can view a complete listing of OPC Toolbox functions and
properties with the opchelp function.

See Also connect, opchelp, set
8-38

opcfind
8opcfindPurpose Find OPC Toolbox objects with specific properties

Syntax Out = opcfind
Out = opcfind('P1',V1,'P2',V2,...)
Out = opcfind(S)

Description Out = opcfind returns a cell array, Out, of all existing OPC Toolbox objects.

Out = opcfind('P1',V1,'P2',V2,...) returns a cell array, Out, of OPC
Toolbox objects whose property values match those passed as property
name/property value pairs, P1, V1, P2, V2, etc.

Out = opcfind(S) returns a cell array, Out, of OPC Toolbox objects whose
property values match those defined in structure S. The field names of S are
object property names and the field values of S are the requested property
values.

Examples Create some OPC Toolbox objects.

da1 = opcda('localhost','Dummy.ServerA');
da2 = opcda('localhost','Dummy.ServerB');
set(da1, 'Tag','myopcTag', 'Timeout',300);
grp = addgroup(da2, 'TestGroup');
itm = additem(grp, {'Dummy.Tag1', 'Dummy.Tag2'});

Find all OPC Toolbox objects

allObjCell = opcfind;

Find all objects with the Tag 'myopcTag'

myOPC = opcfind('Tag', 'myopcTag')

Find all daitem objects

itmCell = opcfind('Type', 'daitem')

See Also delete
8-39

opchelp
8opchelpPurpose Return OPC Toolbox function and property help

Syntax opchelp
opchelp('Name')
Out = opchelp('Name')
opchelp(Obj)
opchelp(Obj,'Name')
Out = opchelp(Obj,'Name')

Description opchelp displays a complete listing of OPC Toolbox functions with a brief
description of each function.

opchelp('Name') displays online help for the function or property, Name. If
Name is an OPC Toolbox class, a complete listing of the functions and properties
for that class is displayed with a brief description of each. The online help for
the object constructor for that class is also displayed. If Name is an OPC Toolbox
class with a .m extension, then only the online help for the object constructor is
displayed.

You can display object-specific function information by specifying Name to be
object/function. For example, to display the online help for the data access
object’s connect function, Name would be 'opcda/connect'.

You can display object-specific property information by specifying Name to be
object.property. For example, to display the online help for the data access
object’s Status property, Name would be 'opcda.Status'.

Out = opchelp('Name') returns the help text to the string Out.

opchelp(Obj) displays a complete listing of functions and properties for the
OPC Toolbox object Obj, along with the online help for the object’s constructor.

opchelp(Obj,'Name') displays the help for function or property, Name, for the
OPC Toolbox object Obj.

Out = opchelp(Obj,'Name') returns the help text to the string Out.

When displaying property help in the command window, the names in the “See
also” section that contain all uppercase letters are function names. The names
that contain a mixture of uppercase and lowercase letters are property names.
8-40

opchelp
When displaying function help, the “See also” section contains only function
names.

Examples This command displays all OPC Toolbox functions and a brief description of
each function.

opchelp

This command displays help on the opcda constructor.

daHelp = opchelp('opcda')

This command displays help on the OPC Toolbox set function.

opchelp set

This command displays help on the opcda object’s disconnect function.

opchelp opcda/disconnect

This code creates an opcda object and queries help information on that object.
The object’s Timeout and Status properties are also queried.

da = opcda('localhost','Matrikon.OPC.Simulation');
opchelp(da)
timeoutHelp = opchelp(da,'Timeout');
opchelp(da,'Status');

See Also propinfo
8-41

opcqparts
8opcqpartsPurpose Extract quality parts from OPC quality ID

Syntax [MajorQual, Substatus, Limit, Vendor] = opcqparts(QualityID)

Description [MajorQual, Substatus, Limit, Vendor] = opcqparts(QualityID)
extracts the major quality, the quality substatus, the limit status, and the
vendor-specific quality information fields, given the daitem object QualityID
property value.

The QualityID is a double value ranging from 0 to 65535, made up of four parts.
The high 8 bits of the QualityID represent the vendor-specific quality
information. The low 8 bits are arranged as QQSSSSLL, where QQ represents the
major quality, SSSS represents the quality substatus, and LL represents the
limit status.

For more information on quality values, see Appendix A, “OPC Quality
Strings.”

Examples Extract the major quality, substatus, and limit status of the item
Random.Qualities on the Matrikon OPC Simulation Server.

da = opcda('localhost','Matrikon.OPC.Simulation');
connect(da)
grp = addgroup(da);
itm = additem(grp, 'Random.Qualities');
[quality, substatus, limit] = opcqparts(itm.QualityID)

See Also get, opcqstr
8-42

opcqstr
8opcqstrPurpose Convert OPC quality ID into readable string

Syntax QualityStr = opcqstr(QualityID)

Description QualityStr = opcqstr(QualityID) constructs a quality string from a
quality ID, stored in the QualityID property of a daitem object. The string is of
the form 'Major Quality: Quality Substatus: Limit Status'. The Limit
Status part is omitted if the limit status is set to Not Limited. For information
on each of the quality parts, see opcqparts.

If QualityID is specified as a vector or matrix of quality IDs, then QualityStr
will be a cell array having the same size as QualityID.

For more information on quality values, see Appendix A, “OPC Quality
Strings.”

Examples Construct the quality string from the quality ID of the item Random.Qualities
on a Matrikon OPC Simulation Server.

da = opcda('localhost','Matrikon.OPC.Simulation');
connect(da)
grp = addgroup(da);
itm = additem(grp, 'Random.Qualities');
qualitystr = opcqstr(itm.QualityID)

See Also get, opcqparts
8-43

opcread
8opcreadPurpose Return logged records from disk to MATLAB workspace

Syntax S = opcread('LogFileName')
S = opcread('LogFileName','PropertyName','PropertyValue',...)
[ItmID,Val,Qual,TStamp,ETime] =

opcread('LogFileName','DataType',DType,...)

Description S = OPCREAD('LogFileName') returns all available records from the OPC log
file named LogFileName. If no extension is specified as part of LogFileName,
then .olf is used.

S is an NRec-by-1 structure array, where NRec is the number of records
returned. S contains the fields 'LocalEventTime' and 'Items'.
LocalEventTime is a date vector corresponding to the local event time for that
record. Items is an NItems-by-1 structure array containing the fields show
below.

S = opcread('LogFileName','PropertyName','PropertyValue',...) limits
the data read from the specified OPC log file based on the properties and values

Field Name Description

ItemID The fully qualified item ID, as a string.

Value The data value. The data type is dependent on the
original Item's DataType property.

Quality The data quality, as a string.

TimeStamp The time the value was changed, as a date vector.
8-44

opcread
provided. Valid Property Names and Property Values are defined in the table
below.

[I,V,Q,TS,ET]=opcread('LogFileName','DataType',DType,...) assigns
the data retrieved from the OPC Log File to separate arrays. DType can be any
valid MATLAB numeric data type (such as 'double' or 'uint4'), or 'cell'.

I is a 1-by-NItem cell array of item names.

V is an NRec-by-NItem array of values with the data type specified. If a data type
of 'cell' is specified, then V is a cell array containing data in the returned data
type for each item. Otherwise, V is a numeric array of the specified data type.

Note DType must be set to 'cell' when retrieving records containing arrays
of values, and/or strings.

Q is an NRec-by-NItem array of quality strings for each value in V.

TS is an NRec-by-NItem array of MATLAB date numbers representing the time
when the relevant value and quality were stored on the OPC Server.

ET is an NRec-by-1 array of MATLAB date numbers, corresponding to the local
event time for each record.

Property Name Property Value

'Records' Specify the required records as [startRec endRec]. If
no records fall within those bounds, opcread returns
empty outputs.

'Dates' Specify the date range for records as [startDt endDt].
The dates must be in MATLAB date number format. If
no records fall within those bounds, opcread returns
empty outputs.

'ItemIDs' Specify the required item IDs as a string or cell array of
strings. If no records match the required ItemIDs,
OPCREAD returns empty outputs.
8-45

opcread
Each record logged may not contain information for every item returned, since
data for that item may not have changed from the previous update. When data
is returned as a numeric matrix, the missing item columns for that record are
filled as follows.

Examples Configure and start a logging task. Wait for the task to complete.

da = opcda('localhost', 'Matrikon.OPC.Simulation');
connect(da);
grp = addgroup(da, 'ExOPCREAD');
itm1 = additem(grp, 'Triangle Waves.Real8');
itm2 = additem(grp, 'Saw-Toothed Waves.Int2');
set(grp, 'LoggingMode', 'disk', 'RecordsToAcquire', 30);
set(grp, 'LogFileName', 'ExOPCREAD.olf');
start(grp);
wait(grp);

Retrieve the first two records into a structure.

s = opcread('ExOPCREAD.olf', 'Records', [1, 2]);

Retrieve all the data and plot it with a legend.

[itmID, val, qual, tStamp] = opcread('ExOPCREAD.olf', ...
 'DataType', 'double');
plot(tStamp(:,1),val(:,1), tStamp(:,2),val(:,2));
legend(itmID);
datetick x keeplimits

See Also getdata, flushdata, peekdata, start, stop

V The corresponding value entry is set to the previous value of that
item, or to NaN if there is no previous value.

Q The corresponding quality entry is set to 'Repeat'.

TS The corresponding time stamp entry is set to the first valid time
stamp for that record.
8-46

opcregister
8opcregisterPurpose Install and register OPC Foundation Core Components

Syntax opcregister
opcregister('repair')
opcregister('remove')

Description opcregister installs the OPC Foundation Core Components so that the OPC
Toolbox is able to communicate with OPC Servers.

opcregister('repair') repairs an existing OPC Foundation Core
Components installation. Use this option if you are experiencing problems
querying hosts with the opcserverinfo function.

opcregister('remove') removes all OPC Foundation Core Components from
your workstation. Use this option if you no longer wish to access any servers
using OPC.

Note You must clear any OPC Toolbox objects that you have previously
created in this MATLAB session before you can run OPCREGISTER. If you
attempt to run OPCREGISTER and OPC Toolbox objects exist, an error will
be generated. Use OPCRESET to clear objects from the MATLAB session.

OPC Foundation Core Components are redistributed under license from the
OPC Foundation, http://www.opcfoundation.org.

See Also opcreset
8-47

opcreset
8opcresetPurpose Disconnect and delete all OPC Toolbox objects

Syntax opcreset
opcreset -force

Description opcreset disconnects and deletes all OPC Toolbox objects. Any data that is
stored in the buffer is flushed, all asynchronous operations are canceled, and
open log files are closed.

You cannot reconnect an OPC Toolbox object to the server after it has been
deleted. Therefore, you should remove it from the workspace with the clear
function.

Note that you cannot call opcreset if an opctool session is open, or if Simulink
models containing OPC blocks are open. Close all opctool sessions and all open
Simulink models containing OPC blocks before calling opcreset.

opcreset -force closes all open opctool sessions and all Simulink models
containing OPC blocks, without prompting to save those sessions and models.
You will lose any unsaved changes to those sessions and models if you use the
-force option. Use the -force option only as a last resort.

Examples This example creates an opcda object, and adds a group to that object. The OPC
objects are then deleted using opcreset, and all variables are cleared from the
workspace.

da = opcda('localhost','Dummy.Server');
grp = addgroup(da);
opcreset; % Deletes all objects
% Clear the variables
clear da grp
opcfind

See Also clear, delete, opcfind, opctool
8-48

opcserverinfo
8opcserverinfoPurpose Return version, server, and status information

Syntax Out = opcserverinfo
Out = opcserverinfo('Host')
Out = opcserverinfo(DAObj)

Description Out = opcserverinfo returns a structure, Out, that contains OPC Toolbox
and MATLAB information. The information includes MATLAB and toolbox
product version numbers.

Out = opcserverinfo('Host') returns a structure, Out, that contains OPC
Server information associated with the host name or IP address specified by
Host. The information includes the ServerID you can use to create a client
associated with that server, and other information about each server.

Out = opcserverinfo(DAObj) returns a structure, Out, that contains
information about the server associated with the opcda object DAObj. DAObj
must be a scalar, and must be connected to the server. The information
includes the current server status, as well as time information related to the
server.

Example This example returns information about servers installed on the local machine.

opcserverinfo('localhost')

This example returns information about the Matrikon Simulation Server
installed on the local host.

da = opcda('localhost', 'Matrikon.OPC.Simulation');
connect(da);
matrikonInfo = opcserverinfo(da)

See Also connect, opcda
8-49

opcstruct2array
8opcstruct2arrayPurpose Convert OPC Data from structure to array format

Syntax [ItmID,Val,Qual,TStamp,EvtTime] = opcstruct2array(S)
[ItmID,Val,Qual,TStamp,EvtTime] = opcstruct2array(S,'DataType')

Description [ItmID,Val,Qual,TStamp,EvtTime] = opcstruct2array(S) converts the
OPC Data structure S into separate arrays for the item ID, value, quality, time
stamp, and event time. S must be a structure as returned by the getdata and
opcread functions. S must contain the fields LocalEventTime and Items. The
Items field of S must contain the fields ItemID, Value, Quality, and TimeStamp.

ItmID is a 1-by-nItm cell array containing the item IDs of all unique items
found in the ItemID field of the Items structures in S.

Val is an nRec-by-nItm array of doubles containing the value of each item in
ItmID, at each time specified by TStamp.

Qual is an nRec-by-nItm cell array of strings containing the quality of each
value in Val.

TStamp is an nRec-by-nItm array of doubles containing the time stamp for each
value in Val.

EvtTime is nRec-by-1 array of doubles containing the local time each data
change event occurred.

Each row of Val represents data from one record received by the OPC Toolbox
at the corresponding entry in EvtTime, while each column of Val represents the
time series for the corresponding item ID in ItmID.

[ItmID,Val,Qual,TStamp,EvtTime] = opcstruct2array(S,'DataType')
uses the data type specified by the string 'DataType' for the value array. Valid
data types are any MATLAB numeric data type, plus 'logical' and 'cell'.

See Also getdata, opcread
8-50

opcsupport
8opcsupportPurpose Run OPC Toolbox troubleshooting utility

Syntax opcsupport
opcsupport('HostName')
opcsupport('HostName','FileName')

Description opcsupport returns diagnostic information for all OPC servers installed on the
local machine, and saves the output to the text file opcsupport.txt in the
current directory.

opcsupport('HostName') returns diagnostic information for the OPC servers
installed on the host named HostName, and saves the output to the text file
opcsupport.txt in the current directory.

opcsupport('HostName','FileName') returns diagnostic information for the
host named HostName, and saves the results to the text file FileName in the
current directory.

Examples opcsupport
opcsupport('area1')
opcsupport('area1','myfile.txt')

See Also opcda, opcserverinfo
8-51

opctool
8opctoolPurpose Open OPC Tool graphical user interface

Syntax opctool
opctool(SessionName)

Description opctool opens the OPC Tool graphical user interface (GUI). The OPC Tool GUI
allows you to graphically browse the contents of an OPC server, view server
item properties, as well as create and configure OPC Toolbox clients, groups
and items. OPC Tool can also be used to read and write OPC data, configure
and start a logging session and export logged data to the workspace.

Clients, groups and items configured using the OPC Tool GUI can be exported
to the workspace, to a MAT-file, or as an OPC Session File that can be imported
into the GUI at a later stage.

opctool(SessionName) opens the OPC Tool GUI and loads a previously saved
OPC Session File. SessionName is the name of the OPC Session File to load. If
an extension is not specified in SessionName, .osf is used.
8-52

openosf
8openosfPurpose Open OPC Tool GUI session file

Syntax openosf('Name.osf')

Description openosf('Name.osf') opens the OPC Tool GUI with the session file Name.osf.
Specifying the .osf extension is optional. Name.osf must exist on the MATLAB
path, or you must specify the full path to the .osf file.

This function is provided mainly to facilitate opening .osf files from the file
browser window.

See Also opctool, open
8-53

peekdata
8peekdataPurpose Preview most recently acquired data

Syntax S = peekdata(GObj, NRec)

Description S = peekdata(GObj, NRec) returns the NRec most recently acquired records
for the dagroup object, GObj, without removing those records from the OPC
Toolbox engine. GObj must be a scalar dagroup object. S is a structure array
containing data for each record, in the same format as the structure returned
by getdata.

If NRec is greater than the number of records currently available, a warning
will be generated and all available records will be returned.

You use peekdata when you want to return logged data but you do not want to
remove the data from the buffer. The object's RecordsAvailable property
value will not be affected by the number of samples returned by peekdata.

peekdata is a non-blocking function that immediately returns records and
execution control to the MATLAB workspace.

Examples Configure and start a logging task for 60 seconds of data.

da = opcda('localhost', 'Matrikon.OPC.Simulation');
connect(da);
grp = addgroup(da, 'ExOPCREAD');
itm1 = additem(grp, 'Triangle Waves.Real8');
itm2 = additem(grp, 'Saw-Toothed Waves.Int2');
set(grp, 'LoggingMode', 'memory', 'RecordsToAcquire', 60);
start(grp);

Wait for 2 seconds and peek at the two most recent records.

pause(2);
s = peekdata(grp, 2)
s.Items(1).Value

Retrieve all the data into a double array and plot it with a legend.

[itmID, val, qual, tStamp] = getdata(grp, 'double');
plot(tStamp(:,1),val(:,1), tStamp(:,2),val(:,2));
legend(itmID);
datetick x keeplimits
8-54

peekdata
See Also flushdata, getdata, start, stop
8-55

propinfo
8propinfoPurpose Return property information for OPC Toolbox objects

Syntax Out = propinfo(Obj)
Out = propinfo(Obj,'PropName')

Description Out = propinfo(Obj) returns a structure array, Out, with field names given
by the property names for Obj. Each property name in Out contains a structure
with the fields shown below:

Out = propinfo(Obj,'PropName') returns a structure array, Out, for the
property specified by PropName. If PropName is a cell array of strings, a cell
array of structures is returned for each property.

Examples da = opcda('localhost','Dummy.Server');
allInfo = propinfo(da)
serverIDInfo = propinfo(da,'ServerID')

See Also opchelp

Field Name Description

Type Data type of the property. Possible values are 'any',
'callback', 'double', and 'string'.

Constraint Type of constraint on the property value. Possible
values are 'bounded', 'callback', 'enum', and
'none'.

ConstraintValue List of valid string values or a range of valid values

DefaultValue Default value for the property

ReadOnly Condition under which a property is read-only:

• 'always' — Property cannot be configured.

• 'whileConnected' — Property cannot be configured
while Status is set to 'connected'.

• 'whileLogging' — Property cannot be configured
while Logging is set to 'on'.

• 'never' — Property can be configured at any time.
8-56

read
8readPurpose Read data synchronously from OPC groups or items

Syntax S = read(GObj)
S = read(Iobj)
S = read(GObj,'Source')
S = read(IObj,'Source')

Description S = read(GObj) and
S = read(Iobj) read data for all the items contained in the dagroup object,
GObj, or for the vector of daitem objects, IObj. The data is read from the OPC
server’s cache. S is a structure array containing data for each item in the
following fields:

You can synchronously read from the cache only if the Active property is set to
'on' for both the item and the group that contains the item. A warning is
issued if any of the objects passed to read are inactive. An inactive item is still
returned in S, but the Quality is set to 'BAD: Out of Service'.

S = read(GObj,'Source') and
S = read(IObj,'Source') read data from the source specified by 'Source'.
'Source' can be 'cache' or 'device'. If 'Source' is 'device', data is
returned directly from the device. If 'Source' is 'cache', data is returned from
the OPC server’s cache, which contains a copy of the device data. Note that the

Field Name Description Type

ItemID Fully qualified item name string

Value Value double, string

Quality Quality of the value string

TimeStamp The time that the value and quality was
obtained by the device (if this is
available), or the time the server
updated or validated the value and
quality in its cache

Date vector

Error Error message string
8-57

read
Active property is ignored when reading from 'device'. Note also, that
reading data from the device can be slow.

Examples Configure a client and a group and item, for the Matrikon Simulation Server.
Set the update rate for this group to prevent frequent cache updates.

da = opcda('localhost', 'Matrikon.OPC.Simulation');
connect(da);
grp = addgroup(da, 'ExRead');
set(grp, 'UpdateRate', 20);
itm = additem(grp, 'Random.Real8');

Read twice from the cache, noting that the values are the same each time.

v1 = read(grp)
v2 = read(grp)

Now read twice from the device, noting that the value updates each time.

v3 = read(grp, 'device')
v4 = read(grp, 'device')

See Also readasync, refresh, write, writeasync
8-58

readasync
8readasyncPurpose Read data asynchronously from group or items

Syntax TransID = readasync(GObj)
TransID = readasync(IObj)

Description TransID = readasync(GObj) and
TransID = readasync(IObj) asynchronously read data for all the items
contained in the dagroup object, GObj, or for the vector of daitem objects
specified by IObj. TransID is a unique transaction ID for the asynchronous
request.

For asynchronous reads, data is always read from the device, not from the
server cache. The Active property is ignored for asynchronous reads.

When the read operation completes, a read async event is generated by the
server. If an M-file callback function is specified for the ReadAsyncFcn property,
that function executes when the event is generated.

You can cancel an in-progress asynchronous request using cancelasync.

Example Configure a client and a group and item, for the Matrikon Simulation Server.

da = opcda('localhost', 'Matrikon.OPC.Simulation');
connect(da);
grp = addgroup(da, 'ExReadAsync');
set(grp, 'UpdateRate', 20);
itm = additem(grp, 'Random.Real8');

Perform two asynchronous read operations.

tid1 = readasync(grp)
tid2 = readasync(grp, 'device')

Examine the event log

pause(2)
disp('Event log:')
showopcevents(da)

See Also cancelasync, read, refresh, write, writeasync
8-59

refresh
8refreshPurpose Read all active items in group

Syntax refresh(GObj)
refresh(GObj,'Source')

Description refresh(GObj) asynchronously reads data for all active items contained in the
dagroup object specified by GObj. Items whose Active property is set to 'off'
will not be read. GObj can be an array of group objects. The data is read from
the OPC server’s cache. You can use refresh only if the Active property is set
to 'on' for GObj.

When the refresh operation completes, a DataChange event is generated by the
server. If an M-file callback function is specified for the DataChangeFcn
property, then the function executes when the event is generated.

refresh is a special case of subscription that forces a DataChange event for all
active items even if the data has not changed. Note that refresh ignores the
Subscription property.

refresh(GObj,'Source') asynchronously reads data from the source specified
by 'Source', which can be 'cache' or 'device'. If 'Source' is 'device', data
is returned directly from the device. If 'Source' is 'cache', data is returned
from the OPC server’s cache. Note that reading data from the device can be
slow.

Examples Configure a client, group, and item for the Matrikon Simulation Server.

da = opcda('localhost', 'Matrikon.OPC.Simulation');
connect(da);
grp = addgroup(da, 'ExRefresh');
itm = additem(grp, 'Random.Real8');

Turn off subscription for the group and add a DataChangeFcn callback

set(grp, 'Subscription', 'off');
set(grp, 'DataChangeFcn', 'disp(grp.Item)')

Call refresh to get group and item updates.

refresh(grp)
refresh(grp)
8-60

refresh
See Also readasync, read, write, writeasync
8-61

removepublicgroup
8removepublicgroupPurpose Remove public group from server

Syntax removepublicgroup(DAObj,'PublicGroupName')

Description removepublicgroup(DAObj,'PublicGroupName') removes the public group
whose name is specified by PublicGroupName from the server that DAObj is
connected to. DAObj must be a connected opcda object.

If the public group has clients using that group when you call
removepublicgroup, a warning is issued and the group is only removed from
the server when all clients have stopped using that group. No additional clients
can connect to that group after you call removepublicgroup.

See Also makepublic, addgroup
8-62

save
8savePurpose Save OPC Toolbox objects to MAT-file

Syntax save FileName
save FileName Obj1 Obj2 ...

Description save FileName saves all variables in the MATLAB workspace to the specified
MAT-file, FileName. If an extension is not specified for FileName, then a .MAT
extension is used.

save FileName Obj1 Obj2 ... saves OPC Toolbox objects, Obj1, Obj2, ... to
the specified MAT-file, FileName. If an extension is not specified for FileName,
then a .MAT extension is used.

save can be used in the functional form as well as the command form shown
above. When using the functional form, you must specify the file name and
OPC Toolbox objects as strings.

Any data associated with the OPC Toolbox object will not be stored in the
MAT-file. The data can be brought into the MATLAB workspace with getdata
and then saved to the MAT-file using a separate variable name.

The load command is used to return variables from the MAT-file to the
MATLAB workspace. Values for read-only properties will be restored to their
default values upon loading. For example, the Status property for an opcda
object will be restored to 'disconnected'. You use propinfo to determine if a
property is read-only.

See Also getdata, load, opchelp, propinfo
8-63

serveritemprops
8serveritempropsPurpose Return property information for items in OPC server name space

Syntax S = serveritemprops(DAObj,ItemID)
S = serveritemprops(DAObj,ItemID,PropID)

Description S = serveritemprops(DAObj,ItemID) returns all property information for
the OPC server items specified by ItemID. ItemID is a single, fully qualified
ItemID, specified as a string. DAObj is an opcda object connected to the OPC
server. S is a structure array with the following fields:

The number of properties returned by the server may be different for different
ItemIDs.

Item properties include the item’s canonical data type, limits, description,
current value, etc.

S = serveritemprops(DAObj,ItemID,PropID) returns property information
for the property IDs contained in PropID. PropID is a vector of integers. If
PropID contains IDs that do not exist for that property, a warning is issued and
any remaining property information is returned.

Note This function is not intended to read large amounts of data. Instead, it
is intended to allow you to easily browse and read small amounts of data
specific to a particular ItemID.

For a complete list of Property IDs defined by the OPC Foundation, consult
Appendix B, “OPC Server Item Properties.”

Examples Find the properties of the Matrikon Simulation Server’s Random.Real4 tag.

Field Name Description

PropID The property number

PropDescription The property description

PropValue The property value
8-64

serveritemprops
da = opcda('localhost', 'Matrikon.OPC.Simulation');
connect(da);
p = serveritemprops(da, 'Random.Real4');

The first property is the Item’s canonical data type.

p(1)

The third property is the Item’s quality

p(3)

See Also serveritems
8-65

serveritems
8serveritemsPurpose Query server or name space for fully qualified item IDs

Syntax FQID = serveritems(DAObj)
FQID = serveritems(DAObj,ItemID)
FQID = serveritems(NS)
FQID = serveritems(NS,ItemID)

Description FQID = serveritems(DAObj,ItemID) returns a cell array of all fully qualified
item IDs matching ItemID that are found on the OPC server defined by DAObj.
DAObj must be a connected opcda object. ItemID is a partial string to search for,
and can contain the wildcard character '*'. FQID is a string or cell array of
strings. You can use FQID in a call to additem to construct daitem objects.

FQID = serveritems(DAObj) returns all fully qualified item IDs on the OPC
server associated with DAObj.

FQID = serveritems(NS) and
FQID = serveritems(NS,ItemID) search the name space structure defined by
NS, rather than querying the OPC server. NS is the result of a call to
getnamespace in either hierarchical or flat format.

Note that some servers may return item IDs that cannot be created on that
server. These item IDs are usually branches of the OPC server name space.

You use the results of a call to serveritems in a call to serveritemprops to
return the property information for items in the OPC server name space. The
properties of the items in the server name space include the server item’s
canonical data type, limits, description, current value, etc.

Examples Create a client for the Matrikon Simulation Server and connect to the server.

da = opcda('localhost', 'Matrikon.OPC.Simulation');
connect(da);

Find all item IDs in the Matrikon Server containing the word 'Real'

realItmIDs = serveritems(da, '*Real*'):

Add all items in the Random node to a group:

grp = addgroup(da, 'ServerItemsEx');
itm = additem(grp, serveritems(da, 'Random.*'));
8-66

serveritems
See Also getnamespace, serveritemprops
8-67

set
8setPurpose Configure or display OPC Toolbox object properties

Syntax set(Obj)
Prop = set(Obj)
set(Obj,'PropertyName')
Prop = set(Obj,'PropertyName')
set(Obj,'PropertyName',PropertyValue)
set(Obj,S)
set(Obj,PN,PV)
set(Obj,'PropName1',PropValue1,'PropName2',PropValue2,...)

Description set(Obj) displays property names and any enumerated values for all
configurable properties of OPC Toolbox object Obj. Obj must be a single OPC
Toolbox object.

Prop = set(Obj) returns all property names and their possible values for
OPC Toolbox object Obj. Obj must be a single OPC Toolbox object. The return
value, Prop, is a structure whose field names are the property names of Obj,
and whose values are cell arrays of possible property values or empty cell
arrays if the property does not have a finite set of possible string values.

set(Obj,'PropertyName') displays the possible values for the specified
property, PropertyName, of OPC Toolbox object Obj. Obj must be a single OPC
Toolbox object.

Prop = set(Obj,'PropertyName') returns the possible values for the
specified property, PropertyName, of OPC Toolbox object Obj. The returned
array, Prop, is a cell array of possible value strings or an empty cell array if the
property does not have a finite set of possible string values.

set(Obj,'PropertyName',PropertyValue) sets the value, PropertyValue, of
the specified property, PropertyName, for OPC Toolbox object Obj. Obj can be a
vector of OPC Toolbox objects, in which case set sets the property values for all
the OPC Toolbox objects specified.

Note that if Obj is connected to an OPC server, configuring server-specific
properties such as UpdateRate and DeadbandPercent might be time
consuming.
8-68

set
set(Obj,S) where S is a structure whose field names are object property
names, sets the properties named in each field name to the values contained in
the structure.

set(Obj,PN,PV) sets the properties specified in the cell array of strings, PN, to
the corresponding values in the cell array PV, for all objects specified in Obj.
The cell array PN must be a vector, but the cell array PV can be M-by-N, where M
is equal to length(Obj) and N is equal to length(PN), so that each object will
be updated with a different set of values for the list of property names
contained in PN.

set(Obj,'PropName1',PropValue1,'PropName2',PropValue2,...) sets
multiple property values with a single statement.

Note that it is permissible to use param-value string pairs, structures, and
param-value cell array pairs in the same call to set.

Examples Create an opcda object and add a group to that object.

da = opcda('localhost','Dummy.Server');
grp = addgroup(da,'SetExample');

Set the opcda object’s Timeout to 300 seconds and restrict the event log to 2000
entries.

set(da,'Timeout',300,'EventLogMax',2000);

Set multiple properties using cell array pairs.

set(da,{'Name','ServerID'},{'My Opcda object','OPC.Server.1'});

Set the group’s name.

set(grp,'Name','myopcgroup');

Query the permissible values for the group’s Subscription property.

set(grp,'Subscription')

See Also get, propinfo, opchelp
8-69

showopcevents
8showopceventsPurpose Display event log summary for OPC Toolbox events

Syntax showopcevents(DAObj)
showopcevents(DAObj,Index)
showopcevents(Struct)
showopcevents(Struct,Index)

Description showopcevents(DAObj) displays a summary of the event log for the opcda
object specified by DAObj.

showopcevents(DAObj,Index) displays a summary of the events with index of
Index. Index can be the numerical index, a string, or a cell array of strings that
specifies the type of event. Valid events are CancelAsync, Error, ReadAsync,
Shutdown, Start, Stop, and WriteAsync.

showopcevents(Struct) and
showopcevents(Struct,Index) display a summary of the events with index of
Index for the event structure, Struct. You can obtain an event structure from
the object’s EventLog property.

The display summary includes the event type, the local time the event
occurred, and additional event-specific information.

Examples This example configures a logging task for the Matrikon Simulation Server,
then displays the event log to find timing information for the logging task.

da = opcda('localhost','Matrikon.OPC.Simulation');
connect(da)
grp = addgroup(da);
set(grp, 'RecordsToAcquire',10);
itm = additem(grp,'Bucket Brigade.Real8');
start(grp);
wait(grp);
showopcevents(da);

See Also opccallback
8-70

start
8startPurpose Start a logging task

Syntax start(GObj)

Description start(GObj) starts a data logging task for GObj. GObj can be a scalar dagroup
object, or a vector of dagroup objects. A dagroup object must be active and
contain at least one item for start to succeed.

When logging is started, GObj performs the following operations:

1 Generates a Start event, and executes the StartFcn callback.

2 If Subscription is 'off', sets Subscription to 'on' and issues a warning.

3 Removes all records associated with the object from the OPC Toolbox
engine.

4 Sets RecordsAcquired and RecordsAvailable to 0.

5 Sets the Logging property to 'on'.

The Start event is logged to the EventLog.

GObj will stop logging when a stop command is issued, or when
RecordsAcquired reaches RecordsToAcquire.

See Also flushdata, getdata, peekdata, stop, wait
8-71

stop
8stopPurpose Stop a logging task

Syntax stop(GObj)

Description stop(GObj) stops any logging tasks associated with dagroup object GObj. GObj
can be a scalar dagroup object or a vector of dagroup objects. When a logging
task is stopped, the object's Logging property is set to 'Off', and the StopFcn
callback is executed.

A dagroup object will also stop running when the requested records are
acquired. This occurs when RecordsAcquired equals RecordsToAcquire.

The Stop event is recorded in the object's EventLog property.

See Also start, wait
8-72

wait
8waitPurpose Suspend MATLAB execution until object has stopped logging

Syntax wait(GObj)
wait(GObj, TSec)

Description wait(GObj) suspends MATLAB execution until the group object GObj has
stopped logging. GObj must be a scalar dagroup object.

wait(GObj, TSec) will wait at most TSec seconds for GObj to stop logging. If
the group object is still logging when the timeout value is exceeded, an error
message is generated.

The wait function can be useful when you want to guarantee that data is logged
before another task is performed.

You can press Ctrl+C to interrupt the wait function. An error message will be
generated, and control will return to the MATLAB command window.

Example This example logs 60 seconds of data from the Matrikon Simulation Server’s
Random.Real8 and Random.UInt4 tags, at 1-second intervals. A message
indicating that acquisition is complete is displayed, and the data is retrieved
and plotted.

da = opcda('localhost','Matrikon.OPC.Simulation');
connect(da)
grp = addgroup(da,'WaitExample');
itm = additem(grp, {'Random.Real8','Random.UInt4'});
set(grp, 'RecordsToAcquire',60, 'UpdateRate',1);
start(grp);
wait(grp)
disp('Acquisition complete');
[itmID,v,q,t]=getdata(grp, 'double');
plot(t(:,1),v(:,1), t(:,2), v(:,2));
legend(itmID);

See Also start, stop, getdata
8-73

write
8writePurpose Write values to group or items

Syntax write(GObj,Values)
write(IObj,Values)

Description write(GObj,Values) writes values to all the items contained in the dagroup
object GObj. Values is a cell array of values—one for each item. To ensure that
a specific value is written to the correct item object, you should construct the
Values cell array based on the order of the items returned by the Item property.

write(IObj,Values) writes values to all the items contained in the vector of
daitem objects specified by IObj.

The data types of the values do not need to match the canonical data type of the
associated items. However an error is returned if a data type conversion cannot
be performed.

Because the values are written to the device, this operation might be slow. The
function does not return until it verifies that the device has actually accepted
or rejected the data.

Examples Configure a client, group, and items for the Matrikon Simulation Server.

da = opcda('localhost', 'Matrikon.OPC.Simulation');
connect(da);
grp = addgroup(da, 'ExWrite');
itm = additem(grp, {'Bucket Brigade.Real8', ...
 'Bucket Brigade.String'});

Read and write values to/from the items.

write(grp, {23, 'Hello World!'})
r = read(grp)
write(itm(1), 15)
r2 = read(itm(1))

See Also read, readasync, refresh, writeasync
8-74

writeasync
8writeasyncPurpose Asynchronously write values to group or items

Syntax TransID = writeasync(GObj,Values)
TransID = writeasync(IObj,Values)

Description TransID = writeasync(GObj,Values) asynchronously writes values to all the
items contained in the dagroup object GObj. Values is a cell array of values and
is the same size as the number of items in GObj. TransID is a unique
transaction ID for the asynchronous request.

TransID = writeasync(IObj,Values) asynchronously writes values to all the
items contained in the vector of daitem objects specified by IObj.

To ensure that a specific value is written to the correct item object, you should
construct the Values cell array based on the order of the items returned by the
Item property. Because the values are written to the device, this operation
might be time consuming.

The data types of the values do not need to match the canonical data type of the
associated items. If a data type conversion cannot be performed, a warning is
issued.

When the asynchronous write operation completes, a write async event is
generated by the server. If an M-file callback function is specified for the
WriteAsyncFcn property, then the function executes when the event is
generated.

Examples Configure a client and a group and items, for the Matrikon Simulation Server.

da = opcda('localhost', 'Matrikon.OPC.Simulation');
connect(da);
grp = addgroup(da, 'ExWrite');
itm = additem(grp, {'Bucket Brigade.Real8', ...
 'Bucket Brigade.String'});

Configure the WriteAsyncFcn callback to read from the group

grp.WriteAsyncFcn = 'r=read(grp,''device'')';

Write values asynchronously.

writeasync(grp, {123.456, 'MATLAB is great!'})
8-75

writeasync
See Also cancelasync, read, readasync, refresh, write
8-76

9

Property Reference

This chapter describes all the properties of OPC Toolbox objects.

Properties — Categorical
List (p. 9-2)

Contains a series of tables that provide brief descriptions of OPC
Toolbox object properties, arranged by category.

Properties — Alphabetical
List (p. 9-8)

Individual reference pages for each property, listed alphabetically.

9 Property Reference

9-2
Properties — Categorical List
This section contains brief descriptions of all properties supported by the OPC
Toolbox objects. The descriptions are organized by OPC Toolbox object type:

• OPC Data Access Client Object Properties (p. 9-2)

• Data Access Group Object Properties (p. 9-4)

• Data Access Item Object Properties (p. 9-7)

OPC Data Access Client Object Properties
The following tables list all the properties of the opcda object in several
categories:

• General properties

• Callback function and event properties

• Server connection properties

General Properties

Group Data Access Group objects contained by client

Name Descriptive name for OPC Toolbox object

Tag Label to associate with OPC Toolbox object

Type OPC Toolbox object type

UserData Data to associate with OPC Toolbox object

Properties — Categorical List
Callback Function and Event Properties

Server Connection Properties

ErrorFcn M-file callback function to execute when an error
event occurs

EventLog Event information log

EventLogMax Maximum number of events to store in event log

ShutDownFcn M-file callback function to execute when OPC
server shuts down

TimerFcn M-file callback function to execute whenever
predefined period of time passes

TimerPeriod Period of time between timer events

Host DNS name or IP address of server

ServerID Server identity

Status Status of connection to OPC server

Timeout Maximum time to wait for completion of
instruction to server
9-3

9 Property Reference

9-4
Data Access Group Object Properties
The following tables list all the properties of the dagroup object in several
categories:

• General properties

• Callback function and event properties

• Subscription and logging properties

General Properties

GroupType Indicate if dagroup object is private or public

Item Data Access Item objects contained by group

Name Descriptive name for OPC Toolbox object

Parent OPC Toolbox object that contains object

Tag Label to associate with OPC Toolbox object

TimeBias Time bias of group

Type OPC Toolbox object type

UserData Data you want to associate with OPC Toolbox object

Properties — Categorical List
Callback Function and Event Properties

CancelAsyncFcn M-file callback function to execute when
asynchronous operation is canceled

DataChangeFcn M-file callback function to execute when a
data change event occurs

ReadAsyncFcn M-file callback function to execute when
asynchronous read has completed

RecordsAcquiredFcn M-file callback function to execute when a
records acquired event is generated

RecordsAcquiredFcnCount Number of records to acquire before a records
acquired event is generated

StartFcn M-file callback function to execute
immediately before logging is started

StopFcn M-file callback function to execute
immediately after logging has stopped

WriteAsyncFcn M-file callback function to execute when
asynchronous write has completed
9-5

9 Property Reference

9-6
Subscription and Logging Properties

Active Group or item activation state

DeadbandPercent Percentage change in item value that causes
subscription callback

LogFileName Name of disk file to which logged data is written

Logging Indicate whether data and events are being stored

LoggingMode Specify where data and events are stored

LogToDiskMode Method of disk file handling for logged data

RecordsAcquired Number of records acquired

RecordsAvailable Number of records available in OPC Toolbox engine

RecordsToAcquire Maximum number of records for a logging session

Subscription Enable server update when data changes

UpdateRate Rate, in seconds, at which subscription callbacks occur

Properties — Categorical List
Data Access Item Object Properties
The following tables list all the properties of the daitem object in two
categories:

• General properties

• Data properties

General Properties

Data Properties

AccessRights Inherent nature of access to item

Active Group or item activation state

ItemID Fully qualified ID on OPC server

Parent OPC Toolbox object that contains object

ScanRate Fastest possible data update rate

Tag Label to associate with OPC Toolbox object

Type OPC Toolbox object type

UserData Data to associate with OPC Toolbox object

CanonicalDataType Server’s data type for item

DataType Client item’s data type

Quality Quality of data value as string

QualityID Quality of data value as number

TimeStamp Time when item was last read

Value Item value
9-7

9 Property Reference

9-8
Properties — Alphabetical List
This section contains detailed descriptions of all toolbox properties. Each
property reference page contains some or all of this information:

• The property name

• The property purpose

• A description of the property

• The property characteristics, including

- Usage — the instrument object(s) the property is associated with

- Read-only — the condition under which the property is read-only

This can be always, never, while the instrument object is connected, or
while the instrument object is recording. You can configure a property
value using the set command or dot notation. You can return the current
property value using the get command or dot notation.

- Data type — the property data type

This is the data type you use when specifying a property value.

• Valid property values including the default value

When property values are given by a predefined list, the default value is
usually indicated by {} (curly braces).

• Examples using the property

• Related functions and properties

AccessRights
9AccessRightsPurpose Inherent nature of access to item

Description AccessRights represents the server’s ability to access a single OPC data item.
The property value can be 'read', 'write', or 'read/write'. If AccessRights
is 'read', you can read the server item’s value. If AccessRights is 'write',
you can write values to the server item. If AccessRights is 'read/write', you
can read and change the server item’s value. If you attempt a read or write
operation on an item that does not have the required access rights, the server
may return an error.

Characteristics

See Also Functions
read, readasync, refresh, write, writeasync

Properties
Subscription

Access Read-only

Applies to daitem

Data type string

Values ['read' | 'read/write' | 'write']
The value is set by the server when an item is created.
9-9

Active
9ActivePurpose Group or item activation state

Description Active can be 'on' or 'off'. If Active is 'on', the OPC server will return data
for the group or item when requested by the read function or when the
corresponding data items change (subscriptions). If Active is 'off', the OPC
server will not return information about the group or item.

By default, Active is set to 'on' when you create a dagroup or daitem object.
Set Active to 'off' when you are temporarily not interested in that daitem or
dagroup object’s values. You configure Active for both dagroup and daitem
objects. Changing the state of the group does not change the state of the items.

The activation state of a dagroup or daitem object affects reads and
subscriptions, and depends on whether the data is obtained from the cache or
from the device. The active state of a group or item affects operations as follows:

A transition from 'off' to 'on' results in a change in quality, and causes a
subscription callback for the item or items affected. Changing the Active state
from 'on' to 'off' will cause a change in quality but will not cause a callback
since by definition callbacks do not occur for inactive items.

You enable subscription callbacks with the Subscription property. Use the
DataChangeFcn property to specify an M-file callback function to execute when
a data change event occurs.

Operation Source Active State

read Cache Both group and items must be active. Inactive
items in active groups, and all items in
inactive groups, return bad quality.

read Device Active is ignored.

write n/a Active is ignored.

Subscription n/a Both group and items must be active. Inactive
items in active groups, and all items in
inactive groups, return bad quality.

readasync n/a Active is ignored.
9-10

Active
Characteristics

See Also Functions
read, readasync, refresh

Properties
DataChangeFcn, Subscription

Access Read/write

Applies to dagroup, daitem

Data type string

Values ['off' | {'on'}]
9-11

CancelAsyncFcn
9CancelAsyncFcnPurpose M-file callback function to execute when asynchronous operation is canceled

Description You configure CancelAsyncFcn to execute an M-file callback function when a
cancel async event occurs. A cancel async event occurs after an asynchronous
read or write operation is canceled.

When a cancel async event occurs, the function specified in CancelAsyncFcn is
passed two parameters: Obj and EventInfo. Obj is the object associated with
the event, and EventInfo is an event structure containing the fields Type and
Data. The Type field is set to 'CancelAsync'. The Data field contains a
structure with the fields shown below.

Cancel async event information is stored in the EventLog property.

Characteristics

See Also Functions
cancelasync, opccallback, readasync, writeasync

Properties
EventLog

Field Name Description

LocalEventTime The time, as a MATLAB date vector, that the event
occurred.

TransID The transaction ID of the canceled read or write
asynchronous operation.

GroupName The group name.

Access Read/write

Applies to dagroup

Data type String, function handle, or cell array

Values The default value is @opccallback.
9-12

CanonicalDataType
9CanonicalDataTypePurpose Server’s data type for item

Description CanonicalDataType indicates the data type of the item as stored on the OPC
server. The MATLAB supported data types are as for the DataType property.

You can specify that the item’s value is stored in the daitem object using a data
type that differs from the canonical data type, by setting the DataType property
of the item to a value different from CanonicalDataType. Translation between
the CanonicalDataType and the DataType is automatic.

Refer to the DataType property reference for a listing of the COM Variant data
types and their equivalent MATLAB data types.

Characteristics

See Also Functions
additem

Properties
DataType

Access Read-only

Applies to daitem

Data type string

Values The default value is determined when the item is
created.
9-13

DataChangeFcn
9DataChangeFcnPurpose M-file callback function to execute when a data change event occurs

Description You configure DataChangeFcn to execute an M-file callback function when a
data change event occurs. A data change event occurs for subscribed active
items within an active group when the value or quality of the item has changed.
The events will happen no faster than the time specified for the UpdateRate
property of the group. The DeadBandPercent property is used to determine
what percentage change in the value or quality initiates the callback. A data
change event is only generated when both the Active and Subscription
properties are 'on'.

When a data change event occurs, the function specified in DataChangeFcn is
passed two parameters: Obj and EventInfo. Obj is the object associated with
the event, and EventInfo is an event structure containing the fields Type and
Data. The Type field is set to 'DataChange'. The Data field contains a structure
with the fields defined below.

The Items structure contains the fields defined below.

Field Name Description

LocalEventTime The time, as a MATLAB date vector, that the event
occurred

TransID 0, or the Refresh transaction ID if the data change
event was generated by refresh

GroupName The group name

Items A structure containing information about each item
whose value or quality updated

Field Name Description

ItemID The item name

Value The data value

TimeStamp The time, as a MATLAB date vector, that the Server’s
cache was updated
9-14

DataChangeFcn
Data change event information is not stored in the EventLog property

Characteristics

See Also Functions
opccallback, refresh

Properties
Active, DeadBandPercent, Subscription, UpdateRate

Access Read/write

Applies to dagroup

Data type string, function handle, or cell array

Values The default value is an empty matrix ([]).
9-15

DataType
9DataTypePurpose Client item’s data type

Description DataType indicates the data type of the item as stored in the daitem object in
MATLAB. You can specify the data type when the item is created using the
additem function. If you do not specify a data type, or if the requested data type
is rejected by the server, the canonical (native) data type is used. If the client
associated with the item is not connected, the data type is set to 'unknown'
until the client is connected.

The OPC server uses this data type to store the item value. The
CanonicalDataType property of a daitem object provides information on the
canonical data type of that item on the server.

OPC communication uses COM Variant data types to send information
between the server and client. These are automatically translated to an
equivalent MATLAB data type for the COM Variant types defined below. Any
data type not included in this list is returned as 'unknown'.

OPC Toolbox Data Type COM Data Type MATLAB Data Type

double VT_R8 double

char VT_BSTR char

single VT_R4 single

uint8 VT_UI1 uint8

uint16 VT_UI2 uint16

uint32 VT_UI4 uint32

uint64 VT_UI8 uint64

int8 VT_I1 int8

int16 VT_I2 int16

int32 VT_I4 int32

int64 VT_I8 int64

currency VT_CY double
9-16

DataType
Characteristics

See Also Functions
additem

Properties
CanonicalDataType

date VT_DATE double

logical VT_BOOL logical

double VT_EMPTY Empty array ([])

OPC Toolbox Data Type COM Data Type MATLAB Data Type

Access Read-only while logging.

Applies to daitem

Data type string

Values [{'unknown'} | 'double' | 'char' | 'single' |
'uint8' | 'uint16' | 'uint32' | 'uint64' |
'int8' | 'int16' | 'int32' | 'int64' |
'currency' | 'date' | 'logical']
9-17

DeadbandPercent
9DeadbandPercentPurpose Percentage change in item value that causes subscription callback

Description You configure DeadbandPercent to a value between 0 and 100. The default
value is 0, which specifies that any value change will update the OPC server's
cache. A non-zero value results in the cache value being updated only if the
difference between the cached value and the current value of the item exceeds

DeadbandPercent * (High EU - Low EU) / 100

The DeadbandPercent property only affects items that have an analogue data
type and 'High EU' and 'Low EU' properties defined (Property IDs 102 and 103
respectively). You can query data types and item properties using
serveritemprops.

Note OPC Servers may not implement the DeadbandPercent property
behaviour, even for values that have High EU and Low EU properties defined.
For servers that do not support DeadbandPercent, an error will be generated if
you attempt to set the DeadbandPercent property to a value other than 0.

DeadbandPercent is applied group wide for all analogue daitem objects, and is
used to prevent noisy signals from updating the client unnecessarily.

Characteristics

See Also Functions
serveritemprops

Properties
Active, Subscription, Updaterate

Access Read/write

Applies to dagroup

Data type double

Values Any value from 0 to 100, inclusive. The default value is
0.
9-18

ErrorFcn
9ErrorFcnPurpose M-file callback function to execute when an error event occurs

Description You configure ErrorFcn to execute an M-file callback function when an error
event occurs. An error event is generated when an asynchronous transaction
fails. For example, an asynchronous read on items that cannot be read
generates an error event. An error event is not generated for configuration
errors such as setting an invalid property value, nor for synchronous read and
write operations.

When an Error event occurs, the function specified in ErrorFcn is passed two
parameters: Obj and EventInfo. Obj is the object associated with the event,
and EventInfo is an event structure containing the fields Type and Data. The
Type field is set to 'Error'. The Data field contains a structure with the
following fields:

The Items structure array contains the following fields:

The default value for ErrorFcn is @opccallback.

Note that error event information is also stored in the EventLog property.

Field Name Description

LocalEventTime The local time (as a date vector) the event occurred.

TransID The transaction ID associated with the event.

GroupName The group name.

Items A structure containing information on each item that
generated an error during that transaction.

Field Name Description

ItemID The item name.

Error The error message.
9-19

ErrorFcn
Characteristics

See Also Functions
opccallback, showopcevents

Properties
EventLog, TimeOut

Access Read/write

Applies to opcda

Data type string, function handle, or cell array

Values @opccallback is the default callback function.
9-20

EventLog
9EventLogPurpose Event information log

Description EventLog contains a structure array that stores information related to OPC
Toolbox events. Every element in the structure array corresponds to an event.

Each element in the EventLog structure contains the fields Type and Data. The
Type value can be 'WriteAsync', 'ReadAsync', 'CancelAsync', 'Shutdown',
'Start', 'Stop' or 'Error'.

Data stores event-specific information as a structure. For information on the
fields contained in Data, refer to the associated callback property reference
pages. For example, to find information on the fields contained in Data for a
Start event, refer to the StartFcn property.

You specify the maximum number of events to store with the EventLogMax
property.

Note that some events are not stored in the EventLog. If you want to store these
events, you must specify a callback for that event.

You can execute a callback function when an event occurs by specifying a
function for the associated callback property. For example, to execute a
callback when a read async event is generated, you use the ReadAsyncFcn
property.

You clear the event log using the cleareventlog function.

Characteristics

Examples The following example creates a client and configures a group with two items.
A 30 second logging task is run, and after 10 seconds the item values are read.
When the logging task stops, the event log is retrieved and examined.

da = opcda('localhost', 'Matrikon.OPC.Simulation');
connect(da);
grp = addgroup(da, 'EvtLogExample');

Access Read-only

Applies to opcda

Data type Structure array

Values The default value is an empty matrix ([]).
9-21

EventLog
itm1 = additem(grp, 'Random.Real8');
itm2 = additem(grp, 'Triangle Waves.UInt1');
set(grp, 'UpdateRate', 1, 'RecordsToAcquire', 30);
start(grp);
pause(10);
tid = readasync(grp);
wait(grp);
el = get(da, 'EventLog')
el = get(da, 'EventLog')

el =
1x3 struct array with fields:
 Type
 Data

Now examine the first event, which is the start event.

el(1)

ans =
 Type: 'Start'
 Data: [1x1 struct]

The Data field contains the following information.

el(1).Data

ans =
 LocalEventTime: [2004 1 13 16 16 25.1790]
 GroupName: 'EvtLogExample'
 RecordsAcquired: 0

The second event is a ReadAsync event. Examine the Data structure and the
first element of the Items structure.

el(2)

ans =
 Type: 'ReadAsync'
 Data: [1x1 struct]

el(2).Data
9-22

EventLog
ans =
 LocalEventTime: [2004 1 13 16 16 35.2100]
 TransID: 2
 GroupName: 'EvtLogExample'
 Items: [2x1 struct]

el(2).Data.Items(1)

ans =
 ItemID: 'Random.Real8'
 Value: 2.4619e+003
 Quality: 'Good: Non-specific'
 TimeStamp: [2004 1 13 16 16 35.1870]

See Also Functions
cleareventlog, start

Properties
CancelAsyncFcn, DataChangeFcn, EventLogMax, ErrorFcn, ReadAsyncFcn,
StartFcn, StopFcn, WriteAsyncFcn
9-23

EventLogMax
9EventLogMaxPurpose Maximum number of events to store in event log

Description When the number of events in the event log reaches EventLogMax, the event log
is cleared. By default, EventLogMax is set to 1000. To continually store events,
specify a value of Inf. To store no events, specify a value of 0.

Characteristics

See Also Functions
cleareventlog

Properties
EventLog

Access Read/write

Applies to opcda

Data type double

Values Any integer in the range [0 Inf]. The default value is
1000.
9-24

Group
9GroupPurpose Data Access Group objects contained by client

Description Group is a vector of dagroup objects contained by the opcda object. Group is
initially an empty vector. The size of Group increases as you add groups with
the addgroup function, and decreases as you remove groups with the delete
function.

Characteristics

See Also Functions
addgroup, delete

Access Read-only

Applies to opcda

Data type dagroup array

Values The default value is an empty array ([]).
9-25

GroupType
9GroupTypePurpose Indicate if dagroup object is private or public

Description GroupType indicates whether a group is private or public. A private group is
local to the opcda client, and other clients must create their own private
groups. A public group is available from the server for any other OPC client on
the network.

Characteristics

See Also Functions
addgroup

Access Read-only

Applies to dagroup

Data type string

Values [{'private'} | 'public']
9-26

Host
9HostPurpose DNS name or IP address of server

Description Host is the name or IP address of the machine hosting the OPC server. If you
specify the host using an IP address, no name resolution is performed on that
address.

Characteristics

See Also Functions
opcda

Properties
ServerID

Access Read-only while connected

Applies to opcda

Data type string

Values The value is configured when the object is created.
9-27

Item
9ItemPurpose Data Access Item objects contained by group

Description Item is a vector of daitem objects contained by the dagroup object. Item is
initially an empty vector. The size of Item increases as you add items with the
additem function, and decreases as you remove items with the delete function.

Characteristics

Example This example creates a fictitious client, adds a group and two items.

da = opcda('localhost', 'Dummy.Server');
grp = addgroup(da, 'MyGroup');
itm1 = additem(grp, 'Item.Name.1');
itm2 = additem(grp, 'Item.Name.2');
allItems = grp.Item

If one of the items is deleted, the Item property is updated to reflect this.

delete(itm2);
newItems = grp.Item

See Also Functions
additem, delete

Access Read-only

Applies to dagroup

Data type daitem

Values The default value is an empty matrix ([]).
9-28

ItemID
9ItemIDPurpose Fully qualified ID on OPC server

Description ItemID is the fully qualified ID of the data item on the OPC server. The server
uses the ItemID to return the appropriate data from the server’s cache, or to
read and send data to a specific device or location.

You obtain valid ItemID values for a particular server by querying that server’s
name space using the getnamespace or serveritems functions.

Characteristics

See Also Functions
additem, getnamespace, serveritems

Access Read-only while connected

Applies to daitem

Data type string

Values The default value is set during creation.
9-29

LogFileName
9LogFileNamePurpose Name of disk file to which logged data is written

Description When you start a logging operation using the start function, and the
LoggingMode property is set to 'disk' or 'disk&memory', then DataChange
events (records) are logged to a disk file with the name specified by
LogFileName. You may specify any value for LogFileName as long as it
conforms to the operating system file naming conventions. If no extension is
specified as part of LogFileName, then .olf is used.

If a log file with the same name as LogFileName already exists when logging is
started, the LogToDiskMode property is used to determine whether to overwrite
the existing file, append records to that file, or create an indexed file based on
LogFileName.

The log file is an ASCII file in comma-separated variable format, arranged as
follows:

DataChange: LocalEventTime
ItemID1, Value1, Quality1, TimeStamp1
ItemID2, Value2, Quality2, TimeStamp2
...
ItemIDN, ValueN, QualityN, TimeStampN
DataChange: <LocalEventTime>
ItemID1, Value1, Quality1, TimeStamp1
ItemID2, Value2, Quality2, TimeStamp2
...
ItemIDN, ValueN, QualityN, TimeStampN
...

Characteristics

See Also Functions
start

Access Read-only while logging

Applies to dagroup

Data type string

Values The default value is 'opcdatalog.olf'.
9-30

LogFileName
Properties
LoggingMode, LogToDiskMode
9-31

Logging
9LoggingPurpose Indicate whether data is being logged

Description Logging is automatically set to 'on' when you issue a start command.
Logging is automatically set to 'off' when you issue a stop command, or when
the requested number of records is logged. You specify the number of records
to log with the RecordsToAcquire property.

When Logging is 'on', each DataChange event (a record) is stored to disk or to
memory (the buffer) as defined by the LoggingMode property.

Characteristics

See Also Functions
start, stop, wait

Properties
LoggingMode, RecordsToAcquire

Access Read-only

Applies to dagroup

Data type string

Values [{'off'} | 'on']
9-32

LoggingMode
9LoggingModePurpose Specify destination for logged data

Description LoggingMode can be set to 'disk', 'memory', or 'disk&memory'. If
LoggingMode is set to 'disk', DataChange events (records) are stored to a disk
file as specified by LogFileName. If LoggingMode is set to 'memory', records are
stored to memory (the buffer). If LoggingMode is set to 'disk&memory', records
are stored to memory and to a disk file. LoggingMode defaults to 'memory'.

The disk file or memory buffer contains data logged from the time you issue the
start command, until the time you issue a stop command or the number of
records specified by the RecordsToAcquire property has been logged. Each
DataChange event constitutes one record, containing one or more items. Only
items that change value or quality are included in a DataChange event. The
logged data includes the ItemID, Value, Timestamp, and Quality for each item
that changed.

Note that when you issue a refresh command while the toolbox is logging, the
results of that operation are included in the log, since a refresh forces a
DataChange event on the OPC server.

You extract data from memory with the getdata function. You can return the
data stored in a log file to the MATLAB workspace with the opcread function.

Characteristics

See Also Functions
getdata, opcread, refresh, start, stop

Properties
LogFileName, RecordsToAcquire

Access Read-only while logging

Applies to dagroup

Data type string

Values ['disk' | 'disk&memory' | {'memory'}]
9-33

LogToDiskMode
9LogToDiskModePurpose Method of disk file handling for logged data

Description LogToDiskMode can be set to 'append', 'overwrite' or 'index'. If
LogToDiskMode is set to 'append', then data for a logged session is added to
any data that already exists in the log file when logging is started using the
start command. If LogToDiskMode is set to 'overwrite', then the log file is
overwritten each time start is called. If LogToDiskMode is set to 'index', then
a different disk file is created each time start is called, according to the
following rules:

1 The first log file name attempted is specified by the initial value of
LogFileName.

2 If the attempted file name exists, then a numeric identifier is added to the
value of LogFileName. For example, if LogFileName is initially specified as
'groupRlog.olf', then groupRlog.olf is the first attempted file,
groupRlog01.olf is the second file name, and so on. If the LogFileName
already contains numbers as the last characters in the file name, then that
number is incremented to create the new log file name. For example, if the
LogFileName is specified as 'groupLog003.olf', then the next file name
would be 'groupLog004.olf'.

3 The actual file name used is the first file name that does not exist. In this
way, each consecutive logging operation is written to a different file, and no
previous data is lost.

Separate dagroup objects are logged to separate files. If two dagroup objects
have the same value for LogFileName, then attempting to log data from both
objects simultaneously will result in the second object failing during the start
operation.

Characteristics

See Also Functions
start

Access Read-only while logging

Applies to dagroup

Data type string

Values ['append' | {'index'} | 'overwrite']
9-34

LogToDiskMode
Properties
LogFilename, Logging, LoggingMode
9-35

Name
9NamePurpose Descriptive name for OPC Toolbox object

Description The default object creation behavior is to automatically assign a name to all
objects. For the opcda object, Name follows the naming scheme 'Host/
ServerID'. For the dagroup object, if a name is not specified upon creation, the
name returned by the OPC server is used, or a unique name is automatically
assigned to the group. Automatically assigned group names follow the naming
scheme 'groupN' where N is an integer.

You can change the Name of an object at any time. The Name can be any string,
and is used for display and identification purposes only.

Characteristics

See Also Functions
opcda, addgroup

Properties
Host, ItemID, ServerID

Access Read/write

Applies to opcda, dagroup

Data type string

Values The default value is defined at object creation time.
9-36

Parent
9ParentPurpose OPC Toolbox object that contains the dagroup or daitem object

Description For dagroup objects, Parent indicates the opcda object that contains the group.
For daitem objects, Parent indicates the dagroup object that contains the
daitem object.

Characteristics

See Also Properties
Group, Item

Access Read-only

Applies to dagroup, daitem

Data type Type of parent object

Values The value is defined at object creation time.
9-37

Quality
9QualityPurpose Quality of data value as a string

Description Quality indicates the quality of the daitem object’s Value property as a string.
You can use the Quality property to determine if a value is useful or not.

The Quality string is made up of a major quality string, a substatus string, and
an optional limit status string, arranged in the format 'Major: Substatus:
Limit status'. The limit status part is omitted if the value is not limited. The
major quality can be one of the following values:

For a list of substatus and limit status values and their interpretations, consult
Appendix A, “OPC Quality Strings.”

Quality is updated when you perform a read operation using read or
readasync, or when a subscription callback occurs. Quality is also returned
during a synchronous read operation.

Characteristics

See Also Functions
read, readasync, refresh

Properties
QualityID, Subscription, TimeStamp, UpdateRate, Value

Value Description

Bad The value is not useful for reasons indicated by the
Substatus.

Good The value is of good quality.

Uncertain The quality of the value is uncertain for reasons
indicated by the Substatus.

Access Read-only

Applies to daitem

Data type string

Values The default value is 'Bad: Out of Service'.
9-38

QualityID
9QualityIDPurpose Quality of data value as 16-bit integer

Description QualityID is a numeric indication of the quality of the daitem object’s data
value.

QualityID is a number ranging from 0 to 65535, made up of four parts. The
high 8 bits of the QualityID represent the vendor-specific quality information.
The low 8 bits are arranged as QQSSSSLL, where QQ represents the major
quality, SSSS represents the quality substatus, and LL represents the limit
status.

You use the opcqparts function to extract the four quality fields from the
QualityID value. Alternatively, you can use the bit-wise functions to extract
the fields you are interested in. For example, to extract the major quality, you
can bit-wise AND the QualityID with 192 (the decimal equivalent of binary
11000000) using the bitand function, and shift the result 6 bits to the right
using the bitshift function.

You use the opcqstr function to obtain the string equivalent of the four quality
fields from the QualityID value.

For more information on quality values, see Appendix A, “OPC Quality
Strings.”

QualityID is updated when you perform a read operation using read or
readasync, or when a subscription callback occurs.

Characteristics

See Also Functions
bitand, bitshift, opcqparts, opcqstr, read, readasync, refresh

Properties
Quality, Value

Access Read-only

Applies to daitem

Data type double

Values An integer from 0 to 65535. The default value is 28
(representing the quality 'Bad: Out of Service').
9-39

ReadAsyncFcn
9ReadAsyncFcnPurpose M-file callback function to execute when asynchronous read has completed

Description You configure ReadAsyncFcn to execute an M-file callback function when an
asynchronous read operation completes. You execute an asynchronous read
with the readasync function. A read async event occurs immediately after the
data is returned by the server to MATLAB.

When a read async event occurs, the function specified in ReadAsyncFcn is
passed two parameters: Obj and EventInfo. Obj is the object associated with
the event, and EventInfo is an event structure containing the fields Type and
Data. The Type field is set to 'ReadAsync'. The Data field contains a structure
with the fields defined below.

The Items structure contains the fields defined below.

Read async event information is stored in the EventLog property.

FIeld Name Description

LocalEventTime The time, as a MATLAB date vector, that the event
occurred.

TransID The transaction ID for the asynchronous read
operation.

GroupName The group name.

Items A structure containing information about each item
whose value or quality updated.

FIeld Name Description

ItemID The item name.

Value The data value.

TimeStamp The time, as a MATLAB date vector, that the Server’s
cache was updated.
9-40

ReadAsyncFcn
Characteristics

See Also Functions
opccallback, readasync

Properties
EventLog

Access Read/write

Applies to dagroup

Data type string, function handle, or cell array

Values The default value is @opccallback.
9-41

RecordsAcquired
9RecordsAcquiredPurpose Number of records acquired

Description RecordsAcquired is continuously updated to reflect the number of records
acquired since the start function was called. When you issue a start
command, the group object resets the value of RecordsAcquired to 0 and
flushes the memory buffer.

To find out how many records are available in the buffer, use the
RecordsAvailable property. You can also configure the RecordsAcquiredFcn
to generate an event each time a particular number of records have been
acquired.

Characteristics

See Also Functions
start

Properties
Logging, RecordsAcquiredFcn, RecordsAvailable

Access Read-only

Applies to dagroup

Data type double

Values The default value is 0.
9-42

RecordsAcquiredFcn
9RecordsAcquiredFcnPurpose M-file callback function to execute when RecordsAcquired event is generated

Description You configure RecordsAcquiredFcn to execute an M-file callback function
when a records acquired event is generated. A records acquired event is
generated each time the RecordsAcquired property reaches a multiple of
RecordsAcquiredFcnCount.

When a records acquired event occurs, the function specified in
RecordsAcquiredFcn is passed two parameters: Obj and EventInfo. Obj is the
object associated with the event, and EventInfo is an event structure
containing the fields Type and Data. The Type field is set to
'RecordsAcquired'. The Data field contains a structure with the fields defined
below.

Records acquired event information is not stored in the EventLog property.

Characteristics

See Also Functions
start

Properties
EventLog, RecordsAcquired, RecordsAcquiredFcnCount

FIeld Name Description

LocalEventTime The time, as a MATLAB date vector, that the event
occurred

GroupName The group name

RecordsAcquired The number of records acquired in the current
logging session at the time the event occurred

Access Read/write

Applies to dagroup

Data type String, function handle, or cell array

Values The default value is an empty matrix ([]).
9-43

RecordsAcquiredFcnCount
9RecordsAcquiredFcnCountPurpose Number of records to acquire before RecordsAcquired event is generated

Description A records acquired event is generated each time the number of records
acquired reaches a multiple of RecordsAcquiredFcnCount.

Characteristics

See Also Properties
RecordsAcquired, RecordsAcquiredFcn

Access Read-only while logging

Applies to dagroup

Data type double

Values Any integer in the range [0 Inf]. The default value is
20.
9-44

RecordsAvailable
9RecordsAvailablePurpose Number of records available in OPC Toolbox engine

Description RecordsAvailable indicates the number of records that are available in the
OPC Toolbox engine. When you extract records from the engine with the
getdata function, the RecordsAvailable value reduces by the number of
records extracted. RecordsAvailable is reset to 0 and the OPC Toolbox engine
is cleared when you issue a start command.

Use the RecordsAcquired property to find out how many records have been
acquired since the start command was issued.

Characteristics

See Also Functions
getdata, start

Properties
RecordsAcquired, RecordsToAcquire

Access Read-only

Applies to dagroup

Data type double

Values Any integer in the range [0 Inf]. The default value is 0.
9-45

RecordsToAcquire
9RecordsToAcquirePurpose Number of records to acquire for a logging session

Description RecordsToAcquire specifies the number of records that must be acquired
before the engine automatically stops logging. When RecordsAcquired reaches
RecordsToAcquire, the Logging property is set to 'off', and no more records
are logged.

To continuously log records, specify a value of Inf.

Characteristics

See Also Properties
Logging, RecordsAvailable

Access Read-only while logging

Applies to dagroup

Data type double

Values Any integer in the range [0 Inf]. The default value is
120.
9-46

ScanRate
9ScanRatePurpose Fastest possible data update rate

Description ScanRate describes the fastest possible rate at which a server can update an
item. The default value is 0, which indicates that the scan rate is not known.
Note that the scan rate may not be attainable by the server due to network
load, server load and other factors.

Characteristics

See Also Properties
UpdateRate

Access Read-only while logging

Applies to dagroup

Data type double

Values The value is set by the server when a daitem object is
created or when you connect to the server.
9-47

ServerID
9ServerIDPurpose Server identity

Description ServerID is the COM style program ID that the opcda object connects to. The
program ID is normally defined during installation of the OPC server.

You use opcserverinfo to find a list of available servers and their Server IDs.

Characteristics

See Also Functions
opcda, opcserverinfo

Properties
Host

Access Read-only while connected

Applies to opcda

Data type string

Values The default value is specified during object creation.
9-48

ShutDownFcn
9ShutDownFcnPurpose M-file callback function to execute when OPC server shuts down

Description You configure ShutDownFcn to execute an M-file callback function when the
OPC server shuts down. Prior to calling the ShutDownFcn callback, the Status
property of the opcda object is changed to 'disconnected'.

When a shutdown event occurs, the function specified in ShutdownFcn is passed
two parameters: Obj and EventInfo. Obj is the object associated with the
event, and EventInfo is an event structure containing the fields Type and Data.
The Type field is set to 'Shutdown'. The Data field contains a structure with the
following fields.

Shutdown event information is stored in the EventLog property.

Characteristics

See Also Functions
opccallback

Properties
EventLog

FIeld Name Description

LocalEventTime The time the event occurred, as a MATLAB date
vector.

Reason The reason for the server shutdown.

Access Read/write

Applies to opcda

Data type string, function handle, or cell array

Values The default value is @opccallback
9-49

StartFcn
9StartFcnPurpose M-file callback function to execute immediately before logging is started

Description You configure StartFcn to execute an M-file callback function when all
prelogging steps have been completed. You start logging by calling the start
function. A start event occurs immediately before Logging is set to 'on'.

When a start event occurs, the function specified in StartFcn is passed two
parameters: Obj and EventInfo. Obj is the object associated with the event,
and EventInfo is an event structure containing the fields Type and Data. The
Type field is set to 'Start'. The Data field contains a structure with the fields
given below.

Start event information is stored in the EventLog property.

Characteristics

See Also Functions
start

Properties
EventLog, Logging

FIeld Name Description

LocalEventTime The time, as a MATLAB date vector, that the event
occurred.

GroupName The group name.

RecordsAcquired The number of records acquired in the current
logging session at the time the event occurred.

Access Read/write

Applies to dagroup

Data type string, function handle, or cell array

Values The default value is an empty matrix ([]).
9-50

Status
9StatusPurpose Status of connection to OPC server

Description Status can be 'disconnected' or 'connected'. You connect an opcda object
with the connect function and disconnect with the disconnect function. If the
opcda object is connected to a server and the server shuts down, the Status
property will be set to 'disconnected'.

Characteristics

See Also Functions
connect, disconnect

Properties
ShutDownFcn

Access Read-only

Applies to opcda

Data type string

Values [{'disconnected'} | 'connected']
9-51

StopFcn
9StopFcnPurpose M-file callback function to execute immediately after logging has stopped

Description You configure StopFcn to execute an M-file callback function when logging has
stopped. Logging stops when you issue a stop command, or when the
RecordsAcquired value reaches RecordsToAcquire.

When a stop event occurs, the function specified in StopFcn is passed two
parameters: Obj and EventInfo. Obj is the object associated with the event,
and EventInfo is an event structure containing the fields Type and Data. The
Type field is set to 'Stop'. The Data field contains a structure with the fields
given below.

Stop event information is stored in the EventLog property.

Characteristics

See Also Functions
stop

Properties
EventLog, RecordsAcquired, RecordsToAcquire

FIeld Name Description

LocalEventTime The time, as a MATLAB date vector, that the event
occurred.

GroupName The group name.

RecordsAcquired The number of records acquired in the current
logging session at the time the event occurred.

Access Read/write

Applies to dagroup

Data type string, function handle, or cell array

Values The default value is an empty matrix ([]).
9-52

Subscription
9SubscriptionPurpose Enable server update when data changes

Description Subscription can be 'on' or 'off'. If Subscription is 'on', server update
notification is enabled for the group. The update occurs when the server cache
quality or value of the data associated with a daitem object contained by the
dagroup object changes. In order for the server cache to be updated, the percent
change in the item value must also be greater than the value specified for the
DeadBandPercent property.

A Subscription value of 'on' instructs the server to issue data change events
when items in the group are updated by the server. Additionally, if an M-file
callback function is specified for the DataChangeFcn property, then that
function executes. If Subscription is 'off', the server may still update item
values and/or quality information, but no data change event is generated.

Note that the refresh function is a special case of subscription, where refresh
forces a data change event for all active items.

Characteristics

See Also Functions
read, readasync, refresh

Properties
Active, DataChangeFcn, DeadBandPercent, UpdateRate

Access Read/write

Applies to dagroup

Data type string

Values ['off' | {'on'}]
9-53

Tag
9TagPurpose Label to associate with OPC Toolbox object

Description You configure Tag to be a string value that uniquely identifies an OPC Toolbox
object.

Tag is particularly useful when constructing programs that would otherwise
need to define the OPC Toolbox object as a global variable, or pass the object as
an argument between callback routines. You can return an OPC Toolbox object
with the opcfind function by specifying the Tag property value.

Characteristics

See Also Functions
opcfind

Access Read/write

Applies to dagroup, daitem, opcda

Data type string

Values The default value is an empty string ('').
9-54

TimeBias
9TimeBiasPurpose Time bias of group

Description TimeBias indicates the time difference between the server and client machines.
In some cases the data may have been collected by a device operating in a time
zone other than that of the client. Then it will be useful to know what the time
of the device was at the time the data was collected (e.g., to determine what
shift was on duty at the time).

The time is specified in minutes and can be positive or negative.

Characteristics

See Also Properties
TimeStamp

Access Read-only

Applies to dagroup

Data type double

Values The default value is 0.
9-55

Timeout
9TimeoutPurpose Maximum time to wait for completion of instruction to server

Description You configure Timeout to be the maximum time, in seconds, to wait for
completion of a synchronous read or a synchronous write operation. If a
time-out occurs, the read or write operation aborts. The default value is 10.

You can use Timeout to abort functions that block access to the MATLAB
command line.

For asynchronous read or write operations, Timeout specifies the time to wait
for the server to acknowledge the request. It does not limit the time for the
instruction to be completed by the server.

Characteristics

See Also Functions
read, readasync, write, writeasync

Access Read/write

Applies to opcda

Data type double

Values Any value in the range [0 Inf]. The default value is 10.
9-56

TimerFcn
9TimerFcnPurpose M-file callback function to execute whenever predefined period of time passes

Description You configure TimerFcn to execute an M-file callback function when a timer
event occurs. A timer event occurs when the time specified by the TimerPeriod
property passes. Timer events are only generated when the Status property is
set to 'connected'. Timer events will stop being generated when the object’s
Status is set to 'disconnected', either by a disconnect function call, or when
the server shuts down.

Some timer events may not be processed if your system is significantly slowed
or if the TimerPeriod value is too small. Timer event information is not stored
in the EventLog property.

Characteristics

See Also Functions
connect, disconnect

Properties
TimerPeriod

Access Read/write

Applies to opcda

Data type string, function handle, or cell array

Values The default value is an empty matrix ([]).
9-57

TimerPeriod
9TimerPeriodPurpose Period of time between timer events

Description TimerPeriod specifies the time, in seconds, that must pass before the callback
function specified by TimerFcn is called.

Some timer events may not be processed if your system is significantly slowed
or if the TimerPeriod value is too small.

Characteristics

See Also Functions
connect, disconnect

Properties
TimerFcn

Access Read only while logging

Applies to opcda

Data type double

Values Any value in the range [0.001 Inf]. The default value
is 10.
9-58

TimeStamp
9TimeStampPurpose Time when item was last read

Description TimeStamp indicates the time when the Value and Quality properties were
obtained by the device (if this is available) or the time the server updated or
validated Value and Quality in its cache. TimeStamp is updated when you
perform an asynchronous or synchronous read operation or when a
subscription callback occurs.

TimeStamp is stored as a MATLAB date vector. You convert date vectors to date
strings with the datestr function, and to MATLAB date numbers with the
datenum function.

Characteristics

See Also Functions
datestr, datenum, datevec, read, readasync, refresh

Properties
Quality, Subscription, UpdateRate, Value

Access Read-only

Applies to daitem

Data type MATLAB date vector

Values The default value is an empty matrix ([]).
9-59

Type
9TypePurpose OPC Toolbox object type

Description Type indicates the type of the object. The OPC Toolbox object types are
'opcda', 'dagroup', and 'daitem'. Once an object is created, the value of Type
is automatically defined, and cannot be changed.

You can identify OPC Toolbox objects of a given type using the opcfind
function and the Type value.

Characteristics

See Also Functions
opcfind

Access Read-only

Applies to dagroup, daitem, opcda

Data type string

Values The value is set during object creation.
9-60

UpdateRate
9UpdateRatePurpose Rate, in seconds, at which subscription callbacks occur

Description UpdateRate specifies the rate, in seconds, at which subscription callbacks
occur. Therefore, UpdateRate determines how often the cached data can be
updated and how often data change events can occur. Consequently,
UpdateRate also controls the rate at which data is logged. You start logging
data change events with the start function.

Data change events can occur only for active items in an active group.
Additionally, subscription must be enabled for the group.

Note that servers can select an update rate that differs from the requested
value. If this occurs, UpdateRate is automatically updated with the returned
value. By specifying an update rate of 0, updates will occur as soon as new
information becomes available for the daitem object. New information is
considered to be a change in the Quality property or a change in the data Value
that exceeds the DeadBandPercent property value.

Characteristics

See Also Functions
start

Properties
Active, DeadBandPercent, Subscription

Access Read-only while logging

Applies to dagroup

Data type double

Values Any value greater than or equal to 0. The default value
is 0.5.
9-61

UserData
9UserDataPurpose Data to associate with OPC Toolbox object

Description You configure UserData to store data that you want to associate with an OPC
Toolbox object. The object does not use this data directly, but you can access it
using the get function.

Characteristics

See Also Properties
Tag

Access Read/write

Applies to dagroup, daitem, opcda

Data type Any MATLAB data type

Values The default value is an empty matrix ([]).
9-62

Value
9ValuePurpose Indicate item value

Description Value indicates the value that was last obtained from the OPC server for the
item defined by the ItemID property. The data type of the value is given by the
DataType property.

The value returned from the server may be different from the value of the
device to which the ItemID refers, if the DeadBandPercent for the daitem
object’s parent group is not zero. The value is also updated only periodically,
based on the parent group’s Active and UpdateRate properties.

You determine the validity of Value by checking the Quality property for the
item.

Value is updated when you perform an asynchronous or synchronous read
operation or when a subscription callback occurs.

Characteristics

See Also Functions
read, readasync, refresh

Properties
Active, DataType, DeadBandPercent, Quality, Subscription, TimeStamp,
UpdateRate

Access Read-only

Applies to daitem

Data type Any MATLAB data type

Values The default value is an empty matrix ([]).
9-63

WriteAsyncFcn
9WriteAsyncFcnPurpose M-file callback function to execute when asynchronous write has completed

Description You configure WriteAsyncFcn to execute an M-file callback function when an
asynchronous write operation completes. You execute an asynchronous write
with the writeasync function. A write async event occurs immediately after
the server notifies the client that data has written to the device.

When a write async event occurs, the function specified in WriteAsyncFcn is
passed two parameters: Obj and EventInfo. Obj is the object associated with
the event, and EventInfo is an event structure containing the fields Type and
Data. The Type field is set to 'WriteAsync'. The Data field contains a structure
with the fields defined below.

The Items structure contains the fields defined below.

Write async event information is stored in the EventLog property.

FIeld Name Description

LocalEventTime The time, as a MATLAB date vector, that the event
occurred.

TransID The transaction ID for the asynchronous write
operation.

GroupName The group name.

Items A structure containing information about each item
whose value or quality was written.

FIeld Name Description

ItemID The item name.
9-64

WriteAsyncFcn
Characteristics

See Also Functions
opccallback, writeasync

Properties
EventLog

Access Read/write

Applies to dagroup

Data type string, function handle, or cell array

Values The default value is @opccallback.
9-65

WriteAsyncFcn
9-66

10
Block Reference

This chapter describes the OPC Blockset library and provides detailed information about the blocks
in the library.

OPC Blockset Library
(p. 10-2)

Describes how to open the OPC Blockset library to access its blocks.

Blocks — Alphabetical List
(p. 10-5)

Contains individual reference pages for the blocks in the OPC Toolbox.

10 Block Reference

10-
OPC Blockset Library
This section describes how to open the OPC Blockset library to access its
blocks. For information about using the blocks in a model, see Chapter 7,
“Using the OPC Blockset Library.”

Opening the Blockset Library
There are several ways to open the library:

• “Using the opclib Command” on page 10-3

• “Using the Simulink Library Browser” on page 10-4
2

OPC Blockset Library
Using the opclib Command
To open the OPC Blockset library, enter

opclib

at the MATLAB prompt. MATLAB displays the contents of the library in a
separate window.

OPC Blockset Library
10-3

10 Block Reference

10-
Using the Simulink Library Browser
To open the OPC Blockset library, start the Simulink Library Browser and
choose the library from the list of available products displayed in the browser.

To start the Simulink Library Browser, enter

simulink

at the MATLAB prompt. MATLAB opens the Simulink Library Browser
window. The left pane contains a list of available products in alphabetical
order. To open the OPC Blockset, click on its entry in the tree.

Selecting the OPC Blockset library in the Simulink Library Browser

Click here to
open the
library.
4

Blocks — Alphabetical List
Blocks — Alphabetical List
This section contains detailed descriptions of the OPC Toolbox blocks. Each
block reference page contains some or all of this information:

• The block name

• The library in which the block is found

• A description of the block

• A detailed description of the block’s dialog, with an explanation of its
parameters

• Related blocks
10-5

OPC Client Manager
10OPC Client ManagerPurpose Display and manage all clients for model

Description The OPC Client Manager is shared among all OPC blocks in a model. The OPC
Client Manager displays and manages all clients for that model. The clients are
shared among all OPC blocks, so that multiple connections to servers are
avoided.

You access the OPC Client Manager from the parameters dialog of the OPC
Configuration, OPC Read, or OPC Write block, by clicking Configure OPC
Clients.

Dialog Box

Add
Add a client to the client list. In the resulting dialog, specify the host,
browse the host for servers (or type the name of the server) and specify the
timeout to use when communicating with the server.

Delete
Delete the selected client from the list. If that client is currently used by
OPC Read or OPC Write blocks, you have the option to delete those blocks
or to replace the client in those blocks with another from the list.

Edit
Allows you to change the timeout value to use when attempting
communication with the server.
10-6

OPC Client Manager
Connect
Connect the selected client to the server.

Disconnect
Disconnect the selected client from the server. Note that when you start a
simulation, an attempt is made to reconnect any disconnected clients.

See Also OPC Configuration, OPC Read, OPC Write
10-7

OPC Configuration
10OPC ConfigurationPurpose Configure OPC clients to use in model, pseudo real-time control options, and
behavior in response to OPC errors and events

Library OPC Blockset

Description The OPC Configuration block defines the OPC clients to be used in a model,
configures pseudo real-time behavior for the model, and defines behavior for
OPC errors and events.

The block has no input ports. One optional output port displays the model
latency (time spent waiting in each simulation step to achieve pseudo real-time
behavior).

You cannot place more than one OPC Configuration block in a model. If you
attempt to do so, an error message appears, and the second OPC Configuration
block becomes disabled.

Dialog Box
10-8

OPC Configuration
Configure OPC Clients
Opens the OPC Client Manager for this model. Each model has a list of
clients associated with it. These clients are used during the simulation to
read or write data to an OPC server. See the OPC Client Manager reference
page for more information.

Error control
Defines actions that Simulink must take when OPC-specific errors and
events are encountered. The available actions are to produce an error and
stop the simulation, produce a warning and continue the simulation, or
ignore the error or event. The following table describes each error or event.

Pseudo real-time simulation
Allows you to configure options for running the simulation in pseudo real
time. When Enable pseudo real-time simulation is checked, the model
execution time matches the system clock as closely as possible by slowing
down the simulation appropriately. The Speedup setting determines how
many times faster than the system clock the simulation runs. For example,

Error/Event Description Default

Items not available
on server

Defines the behavior for items that are
specified in a Read or Write block but do
not exist on the server when the
simulation starts.

error

Read/write errors Defines the behavior when a read or
write operation fails.

warn

Server unavailable Defines the behavior when the client
cannot connect to the OPC server, or
when the server sends a shutdown event
to the client.

error

Pseudo real-time
violation

Defines the behavior when the
simulation runs slower than real time.
See the Pseudo real-time simulation
options for more information.

warn
10-9

OPC Configuration
a setting of 2 means that a 10-second simulation will take 5 seconds to
complete.

Note that the real-time control settings do not guarantee real-time
behavior. If the model runs slower than real time, a pseudo real-time
latency violation error occurs. You can control how Simulink responds to a
pseudo real-time latency violation using the settings in the Error control
panel. You can also output the model latency using the Show pseudo
real-time latency port setting.

Show pseudo real-time latency port
When checked, the pseudo real-time latency (in seconds) is output from the
block. Pseudo real-time latency is the time spent waiting for the system
clock during each step. If this value is negative, the simulation runs slower
than real time, and the behavior defined in the Pseudo real-time
violation setting determines the action that Simulink takes.

See Also OPC Read, OPC Write
10-10

OPC Quality Parts
10OPC Quality Parts

Purpose Convert OPC quality ID into vendor, major, minor, and limit status

Library OPC Blockset

Description The OPC Quality Parts block converts an OPC quality ID vector into four parts:
the vendor status, major quality, quality substatus, and limit status. The
Quality port of an OPC Read block generates quality IDs.

For more information on quality parts, see Appendix A, “OPC Quality Strings.”

See Also OPC Read
10-11

OPC Read
10OPC ReadPurpose Read data from OPC server

Library OPC Blockset

Description The OPC Read block reads data from one or more items on an OPC server. The
read operation takes place synchronously (from the cache or from the device)
or asynchronously (from the device).

The block outputs the values (V) of the requested items in the first output, and
optionally outputs the quality IDs (Q) and the time stamps (T) associated with
each data value in additional outputs. The time stamp may be output as a
serial date number (real-world time), or as the number of seconds from the
start of the simulation (simulation time).

The V,Q,T triple presented at the output ports is the last known data for each
of the items read by the block. Use the time stamp output to determine when a
sample last changed.

Note You must have an OPC Configuration block in your model to use the
OPC Read block. You cannot open the OPC Read dialog without first including
an OPC Configuration block in the model.
10-12

OPC Read
Dialog Box

Import from Workspace
Allows you to import settings for the OPC Read block from a dagroup object
in the base workspace. The client, item IDs, and sample time are updated
based on the properties of the imported group. The Value port data type
is also set if all items in the group have the same DataType property.

Client
Defines the OPC client associated with this block. You can add additional
clients to the list using Configure OPC Clients.

Item IDs
Shows the items to be read from the specified server. You can add items to
the list using Add Items, or delete items using Delete. You can reorder the
10-13

OPC Read
items in the list using Move Up or Move Down. The order of the items
determines the order of their values in the block outputs.

Read mode
Defines the read mode for this block. Available options are Asynchronous,
Synchronous (cache), or Synchronous (device). Synchronous reads have
slightly more overhead than asynchronous reads, but they are generally
more reliable than asynchronous reads.

Sample time
Defines the sample time for the block. For synchronous reads, data is read
from the server at the specified sample time. For asynchronous reads, the
sample time setting defines the update rate for data change events.

Value port data type
Defines the data type for the value output. The OPC server is responsible
for converting all data to the required type.

Show quality port
When checked, the quality IDs of all the items are output in the second port
as a vector of unsigned 16-bit integers. Use the OPC Quality Parts block to
separate the quality ID into component parts.

Show timestamp port
When checked, the timestamps for each of the items are output in the last
port as a vector of doubles. You choose whether to output the timestamps
as Seconds since start (i.e., simulation time) or as Serial date numbers
(i.e., real-world time).

See Also OPC Configuration, OPC Quality Parts, OPC Write
10-14

OPC Write
10OPC WritePurpose Write data to OPC server

Library OPC Blockset

Description The OPC Write block writes data to one or more items on an OPC server. The
write operation takes place synchronously or asynchronously.

Each element of the input vector is written to the corresponding item in the
Item ID list defined for the OPC Write block.

Note You must have an OPC Configuration block in your model to use the
OPC Write block. You cannot open the OPC Write dialog without first
including an OPC Configuration block in the model.

Dialog Box
10-15

OPC Write
Import from Workspace
Allows you to import settings for the OPC Write block from a dagroup
object in the base workspace. The client, item IDs, and sample time are
updated based on the properties of the imported group.

Client
Defines the OPC client associated with this block. You can add clients to
the list using Configure OPC Clients.

ItemIDs
Shows the items to be written to the specified server. You can add items to
the list using Add Items, or delete items using Delete. You can reorder the
items in the list using Move Up or Move Down. Each element of the input
port is written to the corresponding item in the list.

Write mode
Defines the write mode for this block. Available options are Asynchronous
and Synchronous. Synchronous writes have slightly more overhead than
asynchronous writes, but they are generally more reliable than
asynchronous writes.

Sample time
Defines the sample time for the block. Data is written to the server at the
specified sample time. You can specify 0 for continuous mode, or -1 to
inherit the sample time of the block connected to the input of the OPC
Write block.

See Also OPC Configuration, OPC Read
10-16

A

OPC Quality Strings

The OPC Toolbox uses specific quality values defined by the OPC Foundation, based on a major
quality value, a substatus for that major quality value, and a limit status indicating how the value is
limited. This appendix describes the standard quality strings defined by the OPC Foundation that
are used in the OPC Toolbox, and describes any special extensions that the OPC Toolbox uses.

An OPC quality value is a number ranging from 0 to 65535, made up of four parts. The high 8 bits of
the quality value represent the vendor-specific quality information. The low 8 bits are arranged as
QQSSSSLL, where QQ represents the major quality, SSSS represents the quality substatus, and LL
represents the limit status.

The following sections describe the OPC quality values and strings associated with each quality part.

For more information on OPC quality strings, see the Quality property reference page. The quality of
an item is also stored in native value format in the QualityID property of the daitem object.

Major Quality (p. A-2) Describes the major quality strings.

Quality Substatus (p. A-3) Describes the substatus strings associated with each
major quality.

Limit Status (p. A-6) Describes the limit status strings.

A OPC Quality Strings

A-2
Major Quality
The OPC Toolbox uses the following major quality values and strings. The
major quality is contained in bits 7 and 8 of the quality value.

Major Quality Strings Used in the OPC Toolbox

Value Quality String Description

0 Bad The value is not useful for the reason
indicated by the substatus. The table “Bad
Quality Substatus Strings” on page A-5
contains information about the substatus for
bad quality.

1 Uncertain The quality of the value is uncertain for
reasons indicated by the substatus. The table
“Uncertain Quality Substatus Strings” on
page A-4 contains information about the
substatus for uncertain quality.

3 Good The quality of the value is good. The table
“Good Quality Substatus Strings” on page A-3
contains information about the substatus for
good quality.

n/a Repeat The value is repeated from a previous known
value for this item. This OPC Toolbox-specific
value occurs only in data returned from
getdata or opcread, when you request array
formatted values.

Quality Substatus
Quality Substatus
Each major quality status has an additional substatus that describes the
quality of the value in more detail. The following tables describe the quality
substatus for each major quality.

• “Good Quality Substatus Strings” on page A-3

• “Uncertain Quality Substatus Strings” on page A-4

• “Bad Quality Substatus Strings” on page A-5

Good Quality Substatus Strings

Value Substatus String Description

0 Non-specific The value is good. There are no special
conditions.

6 Local Override The value has been overridden. Typically, this
means that the device has been disconnected
from the OPC server (either physically, or
through software) and a manually entered
value has been forced.
A-3

A OPC Quality Strings

A-4
Uncertain Quality Substatus Strings

Value Substatus String Description

0 Non-Specific The server has not published a specific reason
why the value is uncertain.

1 Last Usable
Value

Whatever was writing the data value has
stopped doing so. The returned value should
be regarded as “stale.” Note that this quality
value differs from 'Bad: Last Known Value'
in that the “bad” quality is associated
specifically with a detectable communications
error. The 'Uncertain: Last Usable Value'
string is associated with the failure of some
external source to “put” something into the
value within an acceptable period of time. You
can examine the age of the value using the
Timestamp property associated with this
quality.

4 Sensor Not
Accurate

Either the value has pegged at one of the
sensor limits, or the sensor is otherwise
known to be out of calibration via some form
of internal diagnostics.

5 Engineering
Units Exceeded

The returned value is outside the limits
defined for this value. Note that this
substatus does not imply that the value is
pegged at some upper limit. The value may
exceed the engineering units even further in
future updates.

6 Sub-Normal The value is derived from multiple sources
and has less than the required number of good
sources.

Quality Substatus
Bad Quality Substatus Strings

Value Substatus String Description

0 Non-Specific The value is bad but no specific reason is
known.

1 Configuration
Error

There is some server-specific problem with
the configuration. For example, the item in
question is deleted from the running server
configuration.

2 Not Connected The input is required to be logically connected
to something, but is not connected. This
quality may reflect that no value is available
at this time, possibly because the data source
has not yet provided one.

3 Device Failure A device failure has been detected.

4 Sensor Failure A sensor failure has been detected.

5 Last Known
Value

Communication between the device and the
server has failed. However, the last known
value is available. Note that the age of the
last known value can be determined from the
Timestamp property.

6 Comm Failure Communication between the device and
server has failed. There is no last known
value available.

7 Out of Service The Active state of the item or group
containing the item is set to off. This quality
is also used to indicate that the item is not
being updated by the server for some reason.
A-5

A OPC Quality Strings

A-6
Limit Status
The limit status is not dependent on the major quality and substatus parts of
a quality value.

The following table lists the limit status values and strings used in the OPC
Toolbox.

Value Limit Status String Description

0 Not Limited The value is free to move. Note that when
the limit status has this value, it is omitted
from any quality string in the OPC Toolbox.

1 Low Limited The value is fixed at some lower limit.

2 High Limited The value is fixed at some upper limit.

3 Constant The value is a constant and cannot change.

B

OPC Server Item
Properties

All server items defined in an OPC server name space have associated properties that describe that
server item in more detail. The properties defined by the OPC Foundation are described in this
appendix, under the following sections.

For more information on querying OPC server item properties, consult the help for serveritemprops.

Understanding OPC Server Item
Properties (p. B-2)

Describes how OPC properties relate to server items.

OPC Specific Properties (p. B-4) Describes the OPC specific properties. These properties
are required for each server item.

OPC Recommended Properties (p. B-5) Describes the OPC recommended properties. These
properties contain additional information commonly
associated with server items.

B OPC Server Item Properties

B-2
Understanding OPC Server Item Properties
Every item defined by an OPC server has specific attributes, or properties, that
describe that server item in more detail. These properties include the current
Value, Quality and TimeStamp for the server item, plus additional properties
that a server may require in order to determine the quality of a value, or to
decide whether to generate a DataChange event for groups that have a non-zero
DeadbandPercent value. Exposure of the server item properties to a client is
intended to provide a client with more information on a specific item, and is not
intended to provide efficient access to large amounts of data. Rather, you
should use the read function to read data from a large number of server items.

Each property is identified by a Property ID, or PropID, which is an integer
value. The OPC Data Access Specification defines three sets of these
properties, based on their PropID.

Each of the property sets defined by the OPC Foundation is presented in the
following sections.

OPC Item Property Sets

Set Name ID Range Description

OPC Specific 1 – 99 Information directly related to the
OPC server for that item.

OPC Recommended 100 – 4999 Additional information which is
commonly associated with items,
such as ranges of valid values, alarm
limits, etc.

Vendor Specific 5000 – Specific properties defined by an
OPC server vendor. Since these vary
from vendor to vendor, the actual
descriptions are not presented in this
appendix.

Understanding OPC Server Item Properties
Note OPC servers must implement the OPC Specific properties. However,
the Recommended properties are not mandatory, and an OPC server could
provide any subset of the Recommended properties, or none of them.
B-3

B OPC Server Item Properties

B-4
OPC Specific Properties

OPC Specific Properties

PropID Description

1 “Item Canonical DataType”
The data type of the item as stored on the OPC server. This
property is also exposed in the CanonicalDataType property
of the daitem object.

2 “Item Value”
The value that was last obtained from the OPC server for the
item. This property is the same as the Value property of the
daitem object. Querying this property behaves like a read
operation from the device.

3 “Item Quality”
The quality of the item’s Value property. This property is the
same as the Quality property of the daitem object. Querying
this property behaves like a read operation from the device.

4 “Item Timestamp”
The time that the Value and Quality was obtained by the
device (if this is available) or the time the server updated or
validated the Value and Quality in its cache. This property
is the same as the TimeStamp property of the daitem object.
Querying this property behaves like a read operation from
the device.

5 “Item Access Rights”
The ability of the server to read or write data to this item.

6 “Server Scan Rate”
Represents the fastest rate at which the server could obtain
data from the underlying data source. The accuracy of this
value could be affected by system load and other factors, and
is not a guaranteed rate.

7 – 99 Reserved for future use

OPC Recommended Properties
OPC Recommended Properties
The Recommended Properties are divided into the following tables.

• “Recommended Properties Related to the Item Value” on page B-5

• “Recommended Properties Related to Operator Displays” on page B-7

• “Recommended Properties Related to Alarm and Condition Values” on
page B-8

Recommended Properties Related to the Item Value

PropID Description

100 “EU Units”
The engineering units for this item.

101 “Item Description”
A description of the item.

102 “High EU”
Present only for ‘analog’ data. Represents the highest value
likely to be obtained in normal operation. Also used by
servers that support non-zero DeadBandPercent values for a
group.

103 “Low EU”
Present only for ‘analog’ data. Represents the lowest value
likely to be obtained in normal operation. Also used by
servers that support non-zero DeadBandPercent values for a
group.

104 “High Instrument Range”
Represents the highest value that can be returned by the
instrument.

105 “Low Instrument Range”
Represents the highest value that can be returned by the
instrument.
B-5

B OPC Server Item Properties

B-6
106 “Contact Close Label”
Present only for ‘discrete’ data. Represents a string to be
associated with this contact when it is in the closed
(non-zero) state.

107 “Contact Open Label”
Present only for ‘discrete’ data. Represents a string to be
associated with this contact when it is in the open (zero)
state.

108 “Item Timezone”
The difference in minutes between the item’s UTC
Timestamp and the local time in which the item value was
obtained. The OPC Toolbox does not use this property to
adjust time stamps for an item.

109 – 199 Reserved for future use.

Recommended Properties Related to the Item Value

PropID Description

OPC Recommended Properties
Recommended Properties Related to Operator Displays

PropID Description

200 “Default Display”
The name of an operator display associated with this item.

201 “Current Foreground Color”
The COLORREF in which the item should be displayed.

202 “Current Background Color”
The COLORREF in which the item should be displayed.

203 “Current Blink”
Defines whether a display of this item should blink.

204 “BMP File”
Bitmap file associated with this item.

205 “Sound File”
.WAV or .MID file associated with this item.

206 “HTML File”
URL reference for this item.

207 “AVI File”
Video file associated with this item.

208 – 299 Reserved for future OPC use.
B-7

B OPC Server Item Properties

B-8
Recommended Properties Related to Alarm and Condition Values

PropID Description

300 “Condition Status”
The current alarm condition status associated with the item.

301 “Alarm Quick Help”
A short text string providing a brief set of instructions for the
operator to follow when this alarm occurs.

302 “Alarm Area List”
An array of strings indicating the plant or alarm areas which
include this item.

303 “Primary Alarm Area”
A string indicating the primary plant or alarm area
including this item.

304 “Condition Logic”
An arbitrary string describing the test being performed.

305 “Limit Exceeded”
For multistate alarms, the condition exceeded.

306 “Deadband”

307 “HiHi Limit”

308 “Hi Limit”

309 “Lo Limit”

310 “LoLo Limit”

311 “Rate of Change Limit”

312 “Deviation Limit”

313 – 4999 Reserved for future OPC use.

Index
A
AccessRights property 9-9
Active property 9-10

data change events 4-12
Active status

daitem object 3-7
addgroup function 8-8
additem function 8-10
array formatted data

description 5-13
missing data 5-14

asynchronous read 4-5
multiple values 4-9

asynchronous write
using 4-6

B
blocks

OPC Client Manager 10-6
OPC Configuration 10-8
OPC Quality Parts 10-11
OPC Read 10-12
OPC Write 10-15
using the OPC Blockset library 7-1

C
callback 6-1
callback functions

as text string 6-17
creating 6-15
enabling and disabling 6-18
specifying 6-17
specifying as cell array 6-17
specifying as function handle 6-18
callback properties
list of 6-4

cancel async event
cancelasync function 8-12
CancelAsyncFcn property 9-12
definition 6-4
information returned 6-10

cancelasync function 8-12
CancelAsyncFcn property 9-12
Canonical Datatype 2-15
CanonicalDataType property 9-13
cleareventlog function 8-13
Client object 1-5
clonegroup function 8-14
COM Variant 3-6
COM Variants

converting to MATLAB data types 5-16
connect function 8-15

D
dagroup object

creating 3-2
example 2-10

using 3-5
viewing summary 3-3

dagroup object 1-6
daitem object

Active status 3-7
creating 3-5

example 2-16
disabling 4-13
using 3-8
viewing summary 3-7

daitem object 1-6
Index-1

Index

Ind
data change event
DataChangeFcn property 9-14
forcing 4-13
information returned 6-10
notification 4-11
OPC data returned 5-5
processing 4-14
using callback 4-14

data change events 9-61
data conversion

read operations 5-18
write operations 5-17

data type
conversion during write 4-6
specifying at creation 3-6

Data Types 5-16
data types

converting to COM Variants 5-16
DataChangeFcn property 9-14

data change event response 4-14
DataType property 9-16
DCOM 1-23

configuring 1-10
DeadbandPercent property 9-18

effect on logging 4-20
delete function 8-17
disconnect function 8-18
disconnected client

building hierarchy 3-8
disp function 8-19

E
error event

definition 6-5
information returned 6-10

ErrorFcn property 9-19
ex-2
event structures 6-9
EventLog property 9-21

retrieving information from 6-12
EventLogMax property 9-24
events

retrieving event information 6-9
types of 6-4

F
flatnamespace function 8-21
flushdata function 8-22
frames acquired events

example 6-19
functions

addgroup 8-8
additem 8-10
alphabetical listing 8-7
by category 8-2
cancelasync 8-12
cleareventlog 8-13
clonegroup 8-14
connect 8-15
delete 8-17
disconnect 8-18
disp 8-19
flatnamespace 8-21
flushdata 8-22
genslread 8-23
genslwrite 8-24
get 8-25
getdata 8-26
getnamespace 8-29
getting help 8-2
isvalid 8-32
makepublic 8-34
obj2mfile 8-35

Index
functions (continued)
opccallback 8-37
opcda 8-38
opcfind 8-39
opchelp 8-40
opcqparts 8-42
opcqstr 8-43
opcread 8-44
opcreset 8-48
opcserverinfo 8-49
opcsupport 8-51
peekdata 8-54
propinfo 8-56
read 8-57
readasync 8-59
refresh 8-60
removepublicgroup 8-62
serveritemprops 8-64
serveritems 8-66
set 8-68
showopcevents 8-70
start 8-71
stop 8-72
wait 8-73
write 8-74
writeasync 8-75

G
genslread function 8-23
genslwrite function 8-24
get function 8-25
getdata function 8-26

logging OPC server data 4-25
getnamespace function 8-29
group name 3-3
Group object 1-6

Group property 9-25
GroupType property 9-26

H
help

on functions 8-2
host name 2-4
Host property 9-27

I
inactive items

read operation 4-4
isvalid function 8-32
item ID

daitem object 1-6
OPC server name spaces 1-4
server item 1-4

item object 1-6
item properties B-1
Item property 9-28
ItemID property 9-29

L
LogFileName property 9-30

controlling log destination 4-21
logged data

array format 5-13
converting to arrays 5-14
structure format 5-11
Index-3

Index

Ind
logging 4-16
callbacks 4-22
characteristics 4-16
configuring 4-19
destination 4-20
duration of 4-19
example 4-17
monitoring progress 4-23
retrieving data 4-24
starting 4-22
stopping 4-24

Logging property 9-32
monitoring progress of logging task 4-23

LoggingMode property 9-33
controlling log destination 4-20

LogToDiskMode property 9-34
controlling log destination 4-21

M
makepublic function 8-34
Matrikon OPC Simulation Server

installing 1-14

N
Name property 9-36
name space 1-4

flat 1-5
hierarchical 1-5
ex-4
O
obj2mfile function 8-35
object properties

getting information about 3-18
setting 3-19
special read only modes 3-20
viewing all values 3-16
viewing settable 3-20
viewing specific value 3-17

object vectors
constructing 3-10
definition 3-9
limitations 3-10
read and write 4-7
using 3-12

OPC
about 1-3

OPC Blockset library
using 7-1

OPC Client Manager block 10-6
OPC Configuration block 10-8
OPC Data Access client 1-5
OPC Data Access Group 1-6
OPC Data Access Item 1-6
OPC Foundation Core Components 1-9
OPC GUI

Logging Panel 2-21
OPC item properties B-1
OPC Quality Parts block 10-11
OPC quality strings A-1
OPC Read block 10-12
OPC recommended properties B-5
OPC server ProgId 1-5
OPC specific properties B-4
OPC Toolbox

basic procedure 2-2

Index
OPC Toolbox objects 3-1
configuring 3-16
deleting 3-22
loading 3-24
saving 3-24
server relationship 1-6

OPC Toolbox Objects Toolbar 2-9
OPC Write block 10-15
opccallback function 8-37

read operations 4-5
using default callback function 6-2

opcda client object
connecting 2-9
creating 2-6

opcda function 8-38
opcda object 1-5
opcfind function 8-39

using 3-24
opchelp function 8-40
opcqparts function 8-42
opcqstr function 8-43
opcread function 8-44

filtering retrieved data 4-26
opcreset function 8-48
opcserverinfo function 8-49
opcsupport function 8-51
opctool

example 2-3

P
Parent property 9-37
peekdata function 8-54

properties
AccessRights 9-9
Active 9-10
alphabetical listing 9-8
by category 9-2
CancelAsyncFcn 9-12
CanonicalDataType 9-13
DataChangeFcn 9-14
DataType 9-16
DeadbandPercent 9-18
ErrorFcn 9-19
EventLog 9-21
EventLogMax 9-24
Group 9-25
GroupType 9-26
Host 9-27
Item 9-28
ItemID 9-29
LogFileName 9-30
Logging 9-32
LoggingMode 9-33
LogToDiskMode 9-34
Name 9-36
Parent 9-37
Quality 9-38
QualityID 9-39
ReadAsyncFcn 9-40
RecordsAcquired 9-42
RecordsAcquiredFcn 9-43
RecordsAcquiredFcnCount 9-44
RecordsAvailable 9-45
RecordsToAcquire 9-46
ScanRate 9-47
ServerID 9-48
ShutDownFcn 9-49
StartFcn 9-50
Status 9-51
Index-5

Index

Ind
properties (continued)
StopFcn 9-52
Subscription 9-53
Tag 9-54
TimeBias 9-55
TimeOut 9-56
TimerFcn 9-57
TimerPeriod 9-58
TimeStamp 9-59
Type 9-60
UpdateRate 9-61
UserData 9-62
Value 9-63
WriteAsyncFcn 9-64

property ID 1-21
propinfo function 8-56

Q
Quality property 9-38
QualityID property 9-39

R
read async event

definition 6-6
information returned 6-10
readasync function 8-59
ReadAsyncFcn property 9-40
using read operations 4-5

read function 8-57
read operation

asynchronous 4-5
synchronous 4-2

readasync function 5-4
readasync function 8-59
ReadAsyncFcn property 9-40
ex-6
read-only
whileConnected 3-21
whileLogging 3-21
whilePublic 3-21

records acquired event
configuring logging callbacks 4-22
definition 6-6
information returned 6-11
RecordsAcquiredFcn property 9-43
RecordsAcquiredFcnCount property 9-44

RecordsAcquired property 9-42
monitoring progress of logging task 4-23

RecordsAcquiredFcn property 9-43
RecordsAcquiredFcnCount property 9-44
RecordsAvailable property 9-45

monitoring progress of logging task 4-23
RecordsToAcquire property 9-46

effect on logging 4-20
refresh function 8-60

using 4-13
removepublicgroup function 8-62

S
ScanRate property 9-47
server ID

allocation 2-4
definition 1-4
determining 1-15

server item 3-2
server name space

browsing 1-19
browsing graphically 2-12
view flat 2-13
view hierarchical 2-13

server tag 1-4
ServerID property 9-48

Index
serveritemprops function 8-64
serveritems function 8-66
set function 8-68
showopcevents function 8-70
shutdown event 9-49

definition 6-6
information returned 6-11

ShutDownFcn property 9-49
start event

configuring logging callbacks 4-22
definition 6-7
information returned 6-11
StartFcn property 9-50

start function 8-71
StartFcn property 9-50
Status property 9-51
stop event

configuring logging callbacks 4-22
definition 6-7
information returned 6-11
StopFcn property 9-52

stop function 8-72
StopFcn property 9-52
structure formatted data

converting to arrays 5-12
example of using 5-7
returned from logging 5-11
understanding 5-7
when to use 5-11

Subscription 4-11
Subscription property 9-53

data change events 4-12
Synchronous read

multiple values 4-8
synchronous read 4-2

inactive items 4-4

synchronous write
using 4-6

system requirements
OPC Toolbox 1-8

T
tag 2-12
Tag property 9-54
TimeBias property 9-55
TimeOut property 9-56
timer event

definition 6-7
information returned 6-12

TimerFcn property 9-57
TimerPeriod property 9-58
TimeStamp property 9-59
transaction ID

from read 4-5
from write 4-7

troubleshooting 1-23
Type property 9-60

U
UpdateRate property 9-61

data change events 4-12
effect on logging 4-20

UserData property 9-62

V
Value property 9-63
Index-7

Index

Ind
W
wait function 8-73
write async event

definition 6-8
information returned 6-10
writeasync function 8-75
WriteAsyncFcn property 9-64

write function 8-74
write operation

asynchronous 4-6
multiple values 4-9
synchronous 4-6

writeasync function 8-75
WriteAsyncFcn property 9-64
ex-8

	Introduction
	What Is the OPC Toolbox?
	About OPC
	Understanding OPC Data Access Servers
	Understanding the OPC Toolbox Object Hierarchy
	How OPC Toolbox Objects Relate to OPC Servers
	System Requirements

	Preparing to Use the OPC Toolbox
	Installing the OPC Foundation Core Components
	Configuring DCOM
	Installing the Matrikon OPC Simulation Server

	Exploring Available OPC Servers
	Determining Server IDs for a Host

	Connecting to OPC Servers
	Creating a Client Object
	Connecting a Client to the Server
	Browsing the OPC Server Name Space

	Troubleshooting

	Quick Start: Using the OPC Tool GUI
	Example: Basic OPC Toolbox Acquisition Procedure
	Overview
	Step 1: Launch the OPC Tool GUI
	Step 2: Locate Your OPC Server
	Step 3: Create an OPC Data Access Client Object
	Step 4: Connect to the OPC Server
	Step 5: Create an OPC Data Access Group Object
	Step 6: Browse the Server Name Space
	Step 7: Add OPC Data Access Items to the Group
	Step 8: View All Item Values
	Step 9: Configure Group Properties for Logging
	Step 10: Log OPC Server Data
	Step 11: Plot the Data
	Step 12: Clean Up

	Using OPC Toolbox Objects
	Creating OPC Toolbox Objects
	Creating Data Access Group Objects
	Creating Data Access Item Objects
	Building an Object Hierarchy with a Disconnected Client
	Creating OPC Toolbox Object Vectors
	Working with Public Groups

	Configuring OPC Toolbox Properties
	Viewing the Values of Object Properties
	Viewing the Value of a Particular Property
	Getting Information About Object Properties
	Setting the Value of an Object Property
	Viewing a List of All Settable Object Properties

	Deleting Objects
	Saving and Loading Objects

	Reading, Writing, and Logging OPC Data
	Reading and Writing Data
	Reading Data from an Item
	Writing Data to an Item
	Reading and Writing Multiple Values

	Data Change Events and Subscription
	Configuring OPC Toolbox Objects for Data Change Events
	How the OPC Toolbox Processes Data Change Events
	How to Customize the Data Change Event Response

	Logging OPC Server Data
	How the OPC Toolbox Logs Data
	Configuring a Logging Session
	Executing a Logging Task
	Getting Logged Data into MATLAB

	Working with OPC Toolbox Data
	Understanding OPC Data: Value, Quality, and TimeStamp
	The Relationship Between Value, Quality, and TimeStamp
	How Value, Quality, and TimeStamp Are Obtained

	Working with Structure Formatted Data
	Example: Performing a Read Operation on Multiple Items
	Interpreting Structure Formatted Data
	When to Use Structure Formatted Data
	Converting Structure Formatted Data to Array Format

	Understanding Array Formatted Data
	Conversion of Logged Data to Arrays

	Working with Different Data Types
	Conversion Between MATLAB Data Types and COM Variant Data Types
	Conversion of Values Written to an OPC Server
	Conversion of Values Read from an OPC Server
	Handling Arrays for Item Values

	Using Events and Callbacks
	Example: Using the Default Callback Function
	Event Types
	Retrieving Event Information
	Event Structures
	Example: Accessing Data in the Event Log

	Creating and Executing Callback Functions
	Creating Callback Functions
	Specifying Callback Functions
	Example: Viewing Recently Logged Data

	Using the OPC Blockset Library
	Overview
	Example: Reading and Writing Data from the Matrikon OPC Simulation Server
	Step 1: Open the OPC Blockset Library
	Step 2: Create a New Model
	Step 3: Drag the OPC Toolbox Blocks into the Model
	Step 4: Drag Other Blocks to Complete the Model
	Step 5: Configure OPC Servers for the Model
	Step 6: Specify the Block Parameter Values
	Step 7: Connect the Blocks
	Step 8: Run the Simulation

	Function Reference
	Functions — Categorical List
	Getting Command-Line Function Help
	Object Creation and Configuration Functions
	Server Exploration Functions
	Data Access Functions
	Logging and Buffering Functions
	Simulink Support Functions
	General Functions

	Functions — Alphabetical List
	addgroup
	additem
	cancelasync
	cleareventlog
	clonegroup
	connect
	copyobj
	delete
	disconnect
	disp
	flatnamespace
	flushdata
	genslread
	genslwrite
	get
	getdata
	getnamespace
	isvalid
	load
	makepublic
	obj2mfile
	opccallback
	opcda
	opcfind
	opchelp
	opcqparts
	opcqstr
	opcread
	opcregister
	opcreset
	opcserverinfo
	opcstruct2array
	opcsupport
	opctool
	openosf
	peekdata
	propinfo
	read
	readasync
	refresh
	removepublicgroup
	save
	serveritemprops
	serveritems
	set
	showopcevents
	start
	stop
	wait
	write
	writeasync

	Property Reference
	Properties — Categorical List
	OPC Data Access Client Object Properties
	Data Access Group Object Properties
	Data Access Item Object Properties

	Properties — Alphabetical List
	AccessRights
	Active
	CancelAsyncFcn
	CanonicalDataType
	DataChangeFcn
	DataType
	DeadbandPercent
	ErrorFcn
	EventLog
	EventLogMax
	Group
	GroupType
	Host
	Item
	ItemID
	LogFileName
	Logging
	LoggingMode
	LogToDiskMode
	Name
	Parent
	Quality
	QualityID
	ReadAsyncFcn
	RecordsAcquired
	RecordsAcquiredFcn
	RecordsAcquiredFcnCount
	RecordsAvailable
	RecordsToAcquire
	ScanRate
	ServerID
	ShutDownFcn
	StartFcn
	Status
	StopFcn
	Subscription
	Tag
	TimeBias
	Timeout
	TimerFcn
	TimerPeriod
	TimeStamp
	Type
	UpdateRate
	UserData
	Value
	WriteAsyncFcn

	Block Reference
	OPC Blockset Library
	Opening the Blockset Library

	Blocks — Alphabetical List
	OPC Client Manager
	OPC Configuration
	OPC Quality Parts
	OPC Read
	OPC Write

	OPC Quality Strings
	Major Quality
	Quality Substatus
	Limit Status

	OPC Server Item Properties
	Understanding OPC Server Item Properties
	OPC Specific Properties
	OPC Recommended Properties

	Index

